THE SEVENTH COEFFICIENT OF ODD SYMMETRIC UNIVALENT FUNCTIONS

GEORGE B. LEEMAN, JR.

Let S be the collection of all functions $f(z)=z+\sum_{n=2}{ }^{\infty} a_{n} z^{n}$ analytic and univalent in the unit disk, and denote by $S_{\text {odd }}$ the subset of all functions

$$
\begin{equation*}
f(z)=z+c_{3} z^{3}+c_{5} z^{5}+c_{7} z^{7}+\cdots \tag{1}
\end{equation*}
$$

in S. It is well known that $\left|c_{3}\right| \leq 1$ for such functions, and Littlewood and Paley [8] proved the existence of a constant M such that $\left|c_{2 n-1}\right| \leq M$ for all f in (1), $n=2,3, \cdots$ Levin [7] showed that one can take $M=3.39$, Kung Sun [5] obtained the better estimate $M=2.54$, and Milin [11] improved the result to $M=1.17$, but this value is not sharp. It had been conjectured in [8] that the best value for M is 1 , for this fact would easily imply the Bieberbach conjecture. However, for each $n>2$ Schaeffer and Spencer [12] constructed functions of the form (1) with real coefficients such that $c_{2 n-1}>1$.

In 1933 Fekete and Szegö [2] found the precise bound

$$
\left|c_{5}\right| \leq \frac{1}{2}+e^{-2 / 3}
$$

for functions of the form (1). To the best of our knowledge no sharp estimates have been found since that time, even for the subcollection of functions in $S_{\text {odd }}$ with real coefficients. In this paper we shall determine the precise bound for c_{7} in (1) within this subclass. In addition we will identify all extremal functions.

Before beginning, let us sketch our approach. We first convert our task to maximizing over S a functional in the coefficients a_{2}, a_{3}, and a_{4}. Now Charzynski and Schiffer [1] gave a beautiful proof of the Bieberbach conjecture for the fourth coefficient by exhibiting an inequality involving the same three coefficients. By using their result we reduce our problem to considering a function $k(u, v)$ of two variables; we must maximize k over the collection R of all (u, v) for which there exists a function $z \rightarrow z+u z^{2}+v z^{3}+\cdots$ in S with real coefficients. However, the work of Schaeffer and Spencer [13] and Jenkins [4] shows that the set R is extremely complicated. Hence we work with a slightly larger set Ω where it is easy to find that point (u_{0}, v_{0}) at which k is maximized. Sharpness of our result depends on choosing Ω carefully enough so that (u_{0}, v_{0}) is not in $\Omega-R$. To examine the case of equality we determine the relevant quadratic differential and construct all functions associated with it. Then only a simple numerical computation is required to find the function with the desired properties.

