COVERING PROPERTIES OF RANDOM SERIES

ROBERT KAUFMAN

Let *E* be a closed subset of [0, 1], of Hausdorff dimension α , $0 < \alpha < 1$; by a classical theorem of Frostman [1], *E* can be mapped onto a set of positive Lebesgue measure by a function *f* of class \wedge^{β} if $0 < \beta < \alpha$, and plainly this fails if $\alpha < \beta$. In the case $\beta < \alpha$, the function *f* depends very strongly on *E*, and the usual method of constructing *f* from *E* leads to the suspicion that the structure of *E* must be reflected in some oscillation in *f*. The theorem to be proved goes in the opposite direction.

THEOREM. To each pair of numbers α , β in the region $0 < \beta < \alpha < 1$, there exist some n function f_i of class $\wedge^{\beta}[0, 1]$ with this property: for each closed set $E \subseteq [0, 1]$ of dimension $> \alpha$, almost all functions $f_v = \sum y_i f_i$ ($y_i \in R$) transform E onto a linear set with non-void interior. (Here $n > 8(\alpha - \beta)^{-2}$ seems to be large enough).

1. In the proof of the theorem we need an auxiliary construction of measures. Let μ be a probability measure on a compact subset of Euclidean space \mathbb{R}^n and let $N \geq 1$. There is then defined the function

$$\sum_{i=1}^{2N} u_i x_i$$
, for $x_i \in R^n$, $1 \le |u_i| \le 2$ $(1 \le j \le 2N)$.

LEMMA. Suppose that the set

$$\left\{ \left|\left|\sum_{1}^{2N} u_i x_i\right|\right| < \lambda \right\}$$

has measure $\ll \lambda^{2N+3}$, in the product measure $du_1 \cdots du_{2N} \mu^{(2N)}$ on $\mathbb{R}^{2N} \times \mathbb{R}^{2N}$, uniformly with respect to λ in (0, 1).

Then for almost all y in \mathbb{R}^n (with respect to Lebesgue measure) the distribution of the variable $y \cdot x$, with respect to μ , has a continuous derivative.

Proof. Let $\sigma = \sigma(y)$ be the distribution of the variable $y \cdot x$, so the Fourier-Stieltjes transform of $\sigma(y)$ is represented by the formula

$$\delta(y,s) = \int \exp -2\pi i s(y \cdot x) \mu(dx), \qquad -\infty < s < \infty$$

Then $\sigma(y)$ has a continuous density if there is an $\eta > 0$ so that

$$\left|\int_{T_k} \hat{\sigma}(y,s) \exp 2\pi i s \xi \, ds\right| \ll 2^{-\eta k}$$

uniformly for bounded sets on the ξ -axis, where $T_k = (2^k \leq |s| \leq 2^{k+1})$.

Received August 18, 1975. Revision received December 31, 1975.