CONVERGENCE OF REVERSED MARTINGALES WITH MULTIDIMENSIONAL INDICES

ALLAN GUT

1. Introduction.

Let $d \geq 2$ be an integer and let $Z_{+}{ }^{d}$ denote the positive d-dimensional integer lattice points. For $k, 1 \leq k \leq d$, let $\left(\Omega_{k}, \mathfrak{Q}_{k}, P_{k}\right)$ be a probability space, and set $\Omega=\coprod_{k} \Omega_{k}, \mathfrak{Q}=\otimes \mathfrak{Q}_{k}$ and $P=\coprod_{k} P_{k}$. An indexed random variable, defined on (Ω, Q, P), will always be interpreted as having its index in $Z_{+}{ }^{d}$ (unless explicitly otherwise stated). The notation $\mathbf{m}<\mathbf{n}$, where $\mathbf{m}=\left(m_{1}, m_{2}, \cdots, m_{d}\right)$ and $\mathrm{n}=\left(n_{1}, n_{2}, \cdots, n_{d}\right) \in Z_{+}{ }^{d}$, means that $m_{i} \leq n_{i}, i=1,2, \cdots, d$, (cf. [3]) and $\mathbf{n} \rightarrow \infty$ is to be understood as $n_{i} \rightarrow \infty, i=1,2, \cdots, d$. Also, $|\mathbf{n}|$ is used to denote $\coprod_{k=1}{ }^{d} n_{k}$.
Let $\left\{\mathcal{F}_{\mathrm{n}}=\mathfrak{F}_{n_{1}}{ }^{(1)} \otimes \mathscr{F}_{n_{2}}{ }^{(2)} \otimes \cdots \otimes \mathscr{F}_{n_{d}}{ }^{(d)} ; \mathrm{n} \in Z_{+}{ }^{d}\right\}$ be a sequence of σ-algebras contained in \mathfrak{Q} and such that $\mathfrak{F}_{\mathbf{m}} \subset \mathfrak{F}_{\mathbf{n}}$ if $\mathbf{m}<\mathbf{n}$. Following Cairoli [1] and Cairoli and Walsh [3] we define a martingale to be $\left\{X_{\mathbf{n}}, \mathfrak{F}_{\mathbf{n}} ; \mathbf{n} \in Z_{+}{ }^{d}\right\}$, where

$$
\begin{equation*}
X_{\mathrm{n}} \text { is } \mathfrak{F}_{\mathbf{n}} \text {-measurable and integrable for every } \mathbf{n} \text {; } \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
X_{\mathrm{m}}=E\left(X_{\mathrm{n}} \mid \mathfrak{F}_{\mathrm{m}}\right) \quad \text { a.s. } \quad \text { if } \quad \mathrm{m}<\mathrm{n} . \tag{1.2}
\end{equation*}
$$

As in the one-dimensional case it is easy to see that (1.2) is equivalent to

$$
\begin{equation*}
\int_{\Lambda} X_{\mathrm{m}} d P=\int_{\Lambda} X_{\mathrm{n}} d P ; \quad \text { for } \quad \Lambda \in \mathcal{F}_{\mathrm{m}}, \quad \mathrm{~m}<\mathrm{n} . \tag{1.3}
\end{equation*}
$$

A submartingale will be defined exactly as a martingale except that the equalities in (1.2) and (1.3) are changed to " \leq ".

If $\left\{\mathcal{F}_{\boldsymbol{n}}\right\}$ is a sequence of σ-algebras of product type contained in Q, such that $\mathfrak{F}_{\mathbf{m}} \supset \mathfrak{F}_{\mathbf{n}}$ if $\mathbf{m}<\mathbf{n}$, we define a reversed martingale to be $\left\{X_{\mathbf{n}}, \mathfrak{F}_{\mathbf{n}} ; \mathbf{n} \in Z_{+}{ }^{d}\right\}$, where (1.1) is satisfied and

$$
\begin{equation*}
X_{\mathrm{m}}=E\left(X_{\mathrm{n}} \mid \mathcal{F}_{\mathrm{m}}\right) \quad \text { a.s. } \quad \text { if } \quad \mathrm{n}<\mathrm{m} . \tag{1.4}
\end{equation*}
$$

Again it is easy to see that (1.4) is equivalent to

$$
\begin{equation*}
\int_{\Lambda} X_{\mathrm{m}} d P=\int_{\Lambda} X_{\mathrm{n}} d P \text { for } \Lambda \in \mathfrak{F}_{\mathrm{m}}, \quad \mathrm{n}<\mathrm{m} \tag{1.5}
\end{equation*}
$$

A reversed submartingale will be defined the same way except that the equalities in (1.4) and (1.5) are changed to " \leq ".

Also, in the reversed cases we set $\mathcal{F}=\bigcap_{\mathbf{n}} \mathfrak{F}_{\mathbf{n}}$.
In [1] maximal inequalities corresponding to Doob [5], 314 and 317 are proved
Received December 17, 1975.

