ON THE GROWTH OF MEROMORPHIC FUNCTIONS HAVING AT LEAST ONE DEFICIENT VALUE

JOSEPH MILES AND DANIEL F. SHEA

Introduction. Let f(z) be meromorphic in the plane and denote by N(r, c) the usual Nevanlinna counting function for the *c*-points of f in $|z| \leq r$ (for this and other standard terminology, see [10]). If f has finite order λ and

$$m_{2}(r, f) = \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} (\log |f(re^{i\theta})|)^{2} d\theta \right\}^{\frac{1}{2}},$$

then we have shown [14]

(1)
$$\limsup_{r\to\infty}\frac{N(r,0)+N(r,\infty)}{m_2(r,f)}\geq C(\lambda) \qquad (0\leq\lambda<\infty),$$

(2)
$$C(\lambda) = \frac{|\sin \pi \lambda|}{\pi \lambda} \left\{ \frac{2}{1 + (\sin 2\pi \lambda)/2\pi \lambda} \right\}^{\frac{1}{2}}.$$

Equality holds in (1) for "Lindelöf functions": entire f having all zeros on a ray through 0 and $N(r, 0) \sim r^{\lambda} \ (r \to \infty)$, see [15, p. 229].

If we take into account the lower order

$$\mu = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}$$

of f, where T denotes the usual Nevanlinna characteristic, results of Edrei [3], Kjellberg [13] and Ostrovskii [16] suggest that (1) can be extended in a useful (e.g., [9, pp. 121, 123]) way, to

(3)
$$\limsup_{r\to\infty}\frac{N(r,0)+N(r,\infty)}{m_2(r,f)}\geq C(\rho) \qquad (\mu\leq\rho\leq\lambda)$$

if $\mu < \infty$, where C is defined in (2).

However, the methods of [3], [13], [16] are not applicable here because of an interesting technical difficulty (see Section 1); our solution uses a method that makes Edrei's notion of Pólya peaks more flexible in other problems as well.

Let $\{r_n\}$ be a sequence of Pólya peaks of order ρ for T(r) = T(r, f), i.e., $r_n \to \infty$ and

(4)
$$T(r) \leq T(r_n)(r/r_n)^{\rho}(1 + \eta_n) \qquad (\eta_n r_n \leq r \leq \eta_n^{-1} r_n)$$

Received May 12, 1975. Revision received November 10, 1975. Research supported in part by NSF grants GP-24573 and GP-21340. The second author gratefully acknowledges the hospitality of the California Institute of Technology during 1974-75.