COEFFICIENT OF INJECTIVITY FOR QUASIREGULAR MAPPINGS

JUKKA SARVAS

1. Introduction.

1.1. Let G be a domain in the n-dimensional euclidean space \mathbb{R}^n , $n \geq 2$. Consider a local homeomorphism $f: G \to \mathbb{R}^n$. For every $x \in G$ we define r(x, f) as the supremum over all r > 0 such that f is injective in

$$B^{n}(x, r) = \{y \in R^{n} \mid |x - y| < r\}$$

and $B^n(x, r) \subset G$, and we call r(x, f) the radius of injectivity of f at x. If $G = B^n = B^n(0, 1)$ and x = 0, we abbreviate r(f) = r(0, f).

Martio, Rickman and Väisälä proved in [MRV3; 2.3] that if $f: B^n \to R^n$ is a K-quasiregular local homeomorphism and $n \ge 3$, then $r(f) \ge c > 0$, where c is a constant depending only on n and $K \ge 1$. In other words, if $n \ge 3$,

(1.2)
$$\psi_n(K) = \inf_f r(f) > 0,$$

where the infimum is taken over all K-quasiregular local homeomorphisms $f: B^n \to R^n$. If n = 2, (1.2) fails; for instance, the mappings $f_j: B^2 \to R^2$, $f_j(z) = e^{iz}, j = 1, 2, \cdots$, provide a counter-example.

Let $f: G \to R^n$, $n \ge 3$, be K-quasiregular and let B_f denote the branch set of f. If $x \in G \setminus B_f$, it is easy to see by similarity mappings that

(1.3)
$$r(x, f) \geq \psi_n(K)d(x, B_f \cup \partial G) > 0,$$

where ∂G is the boundary of G (taken in \bar{R}^n) and d(x, A) is the euclidean distance from x to a non-empty set $A \subset \bar{R}^n$. Due to (1.3) we call $\psi_n(K)$ the coefficient of injectivity for quasiregular mappings. Furthermore, (1.3) immediately implies the theorem of Zorič [Z]: If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a quasiregular local homeomorphism and $n \geq 3$, then f is a homeomorphism.

In this paper we will study the behavior of the function $\psi_n : [1, \infty) \to (0, 1]$ defined by (1.2) for $n \ge 3$. Our main results are: (i) If $t \ge s \ge 1$, then

$$\exp(-a_n t^{1/(n-1)}) \le \psi_n(t) \le \exp(-\alpha_n(s) t^{1/(n-1)}),$$

where

$$a_n \in (0, \infty)$$
 and $\lim_{s \to \infty} \alpha_n(s) = a_n$

Received June 9, 1975.