GENERALIZED PROJECTIONS AND REDUCIBLE SUBNORMAL OPERATORS

C. R. PUTNAM

1. If A is a bounded operator on a Hilbert space, its spectrum and point spectrum will be denoted by $\sigma(A)$ and $\sigma_{p}(A)$ respectively. An operator T on a Hilbert space $\mathfrak{5}$ is said to be subnormal if it has a normal extension on a Hilbert space $\Omega \supset \mathfrak{W}$. Throughout the sequel, the orthogonal projection of Ω onto \mathfrak{S} will be denoted by P. Concerning subnormal operators, see Halmos [2]. We recall some properties. A subnormal operator T has a minimal normal extension N and $\sigma(N) \subset \sigma(T)$ (P. R. Halmos); further, $\sigma(T)$ consists of $\sigma(N)$ together with some of the holes of $\sigma(N)(\mathrm{J}$. Bram). A subnormal T is called completely subnormal if it has no normal part, that is, if there exists no nontrivial subspace of $\mathfrak{5}$ which reduces T and on which T is normal. If T is subnormal and if $z \in \sigma_{p}(T)$ then $\bar{z} \in \sigma_{p}\left(T^{*}\right)$ and, if T is completely subnormal, $\sigma_{p}(T)$ is empty. If X is a compact set of the complex plane, let $C(X)$ and $R(X)$ denote respectively the continuous functions on X and the functions uniformly approximable on X by rational functions with poles off X. It was shown by Clancey and Putnam [1] that X is the spectrum of a completely subnormal operator if and only if $R\left(X \cap D^{-}\right) \neq C\left(X \cap D^{-}\right)$whenever D is an open disk intersecting X in a non-empty set.
If A is any bounded operator and if C is any (positively oriented) rectifiable simple closed curve lying outside $\sigma(A)$, then one can define the Riesz integral

$$
\begin{equation*}
L=-(2 \pi i)^{-1} \int_{C}(A-t)^{-1} d t \tag{1.1}
\end{equation*}
$$

as a (bounded) operator satisfying the projection property $L^{2}=L$. In case $\sigma=\sigma(A) \cap \operatorname{int} C \neq \varnothing$, then the space $\mathfrak{M}=L(\mathfrak{Y})$ is invariant under A and $\sigma(A \mid \mathfrak{M})=\sigma . \quad$ See Riesz and Sz.-Nagy [7], p. 418.

In certain cases, L is self-adjoint and hence is an orthogonal projection. This occurs, for example, if A is normal. More generally, let A be subnormal and let $\sigma(A)$ be the union of two non-empty disjoint parts σ_{1} and σ_{2}. If C is a rectifiable simple closed curve lying outside $\sigma(A)$ and separating σ_{1} and σ_{2}, then L of (1.1) is an orthogonal projection and A has the direct sum representation $A=A_{1} \oplus A_{2}$ on $\mathfrak{T}=L(\mathfrak{Y}) \otimes(\mathfrak{S} \ominus L(\mathfrak{S}))$ and $\sigma\left(A_{k}\right)=\sigma_{k}(k=1,2)$. See Williams [9], pp. 97-98.

It is noteworthy that an analogue of the above result does not hold in general for hyponormal operators. (An operator A is hyponormal if $A^{*} A-A A^{*} \geq 0$.

[^0]
[^0]: Received July 22, 1975. Revision received October 27, 1975. This work was supported by a National Science Foundation research grant.

