LOCALLY SMOOTH CIRCLE ACTIONS ON HOMOTOPY 4-SPHERES

RONALD FINTUSHEL

1. Introduction. In this paper we classify up to weak equivalence locally smooth effective actions of S^{1} on homotopy 4 -spheres. The classification is accomplished in terms of some rather minimal orbit data. If any compact connected Lie group other than S^{1} acts on a homotopy 4 -sphere then P. Orlik has shown in [5] that the homotopy 4 -sphere is actually S^{4}. In [6] R. W. Richardson has shown that actions on S^{4} of compact connected Lie groups of dimension at least two are equivalent to linear actions.

Throughout this paper M^{4} will denote a homotopy 4 -sphere with locally smooth S^{1} action. For any subset X of M^{4}, X^{*} denotes its image in the orbit space M^{*}. All actions are taken to be effective.

The present investigation may be considered as having originated in [3] where Montgomery and Yang obtained the following information.
(1.1) The fixed point set F is homeomorphic either to S^{2} or to a pair of points. In the first case M^{*} is a homotopy 3 -cell with boundary F^{*}. In the other case M^{*} is a homotopy 3 -sphere.
(1.2) If E denotes the exceptional orbit set, $F^{*} \cup E^{*}$ is polyhedral in M^{*}.
(1.3) There is no simple closed curve K in E^{*} on which the orbit types are constant.

Actually, these results are proved in the context of differentiable actions of S^{1} on S^{4}. However the proofs carry over to the present situation.

Proposition 1.4. There are at most two exceptional orbit types. If there is one exceptional orbit type then $E^{*} \cup F^{*}$ is an arc, and F^{*} is the set of endpoints. If there are two exceptional orbit types then $E^{*} \cup F^{*}$ is a simple closed curve separated by F^{*} into two open arcs on each of which the orbit type is constant.

Proof. If $x \in E$ let the closed 3 -disk S_{x} be a linear slice at x. The isotropy group at x is a finite cyclic group \mathbf{Z}_{α} acting as a group of rotations. $E \cap S_{x}$ is the axis of rotation, and each point in $E \cap S_{x}$ has isotropy group Z_{α}. It follows from (1.3) that E^{*} consists of a collection of open arcs each of constant orbit type.

If $y \in F$, let the closed 4-disk S_{y} be a linear slice at y. The S^{1} action on S_{ν} is the cone of the S^{1} action on ∂S_{ν}. If the action on the 3 -sphere ∂S_{y} has fixed points, it has exactly one circle of fixed points and no exceptional orbits [4]. If the action on ∂S_{y} is fixed point free, it has at most two exceptional orbits. Further, if there are two exceptional orbits on ∂S_{y} they have orbit types $\mathbf{Z}_{\alpha_{1}}$ and $Z_{\alpha_{2}}$ with α_{1} and α_{2} relatively prime [2].

Received May 31, 1975.

