LOCALLY SMOOTH CIRCLE ACTIONS ON HOMOTOPY 4-SPHERES

RONALD FINTUSHEL

1. Introduction. In this paper we classify up to weak equivalence locally smooth effective actions of S^1 on homotopy 4-spheres. The classification is accomplished in terms of some rather minimal orbit data. If any compact connected Lie group other than S^1 acts on a homotopy 4-sphere then P. Orlik has shown in [5] that the homotopy 4-sphere is actually S^4 . In [6] R. W. Richardson has shown that actions on S^4 of compact connected Lie groups of dimension at least two are equivalent to linear actions.

Throughout this paper M^4 will denote a homotopy 4-sphere with locally smooth S^1 action. For any subset X of M^4 , X^* denotes its image in the orbit space M^* . All actions are taken to be effective.

The present investigation may be considered as having originated in [3] where Montgomery and Yang obtained the following information.

- (1.1) The fixed point set F is homeomorphic either to S^2 or to a pair of points. In the first case M^* is a homotopy 3-cell with boundary F^* . In the other case M^* is a homotopy 3-sphere.
 - (1.2) If E denotes the exceptional orbit set, $F^* \cup E^*$ is polyhedral in M^* .
- (1.3) There is no simple closed curve K in E^* on which the orbit types are constant.

Actually, these results are proved in the context of differentiable actions of S^1 on S^4 . However the proofs carry over to the present situation.

PROPOSITION 1.4. There are at most two exceptional orbit types. If there is one exceptional orbit type then $E^* \cup F^*$ is an arc, and F^* is the set of endpoints. If there are two exceptional orbit types then $E^* \cup F^*$ is a simple closed curve separated by F^* into two open arcs on each of which the orbit type is constant.

Proof. If $x \in E$ let the closed 3-disk S_x be a linear slice at x. The isotropy group at x is a finite cyclic group \mathbf{Z}_{α} acting as a group of rotations. $E \cap S_x$ is the axis of rotation, and each point in $E \cap S_x$ has isotropy group \mathbf{Z}_{α} . It follows from (1.3) that E^* consists of a collection of open arcs each of constant orbit type.

If $y \in F$, let the closed 4-disk S_y be a linear slice at y. The S^1 action on S_y is the cone of the S^1 action on ∂S_y . If the action on the 3-sphere ∂S_y has fixed points, it has exactly one circle of fixed points and no exceptional orbits [4]. If the action on ∂S_y is fixed point free, it has at most two exceptional orbits. Further, if there are two exceptional orbits on ∂S_y they have orbit types Z_{α_1} and Z_{α_2} with α_1 and α_2 relatively prime [2].

Received May 31, 1975.