A PICARD THEOREM FOR HOLOMORPHIC CURVES IN THE PLANE

JAMES A. CARLSON AND MARK GREEN

0. Introduction.

A natural algebro-geometric generalization of the situation dealt with in one variable by Picard's theorem is to consider holomorphic maps $f: \mathbf{C}^{k} \rightarrow \mathbf{P}_{n}$ which omit a hypersurface D. When $k=n$ and D is smooth or has simple singularities, there is a nice answer-if $\operatorname{deg} D$ is $\geq n+2$, then $d f$ is everywhere singular ([1], [2]). For $k<n$, the situation is more complicated at present (see [4] for a discussion), although it is conjectured that for D as above, we should have $f(D)$ forced to lie in an algebraic hypersurface of \mathbf{P}_{n}.

Recently ([3]), it was shown for maps to \mathbf{P}_{2} that if the dual curve of a curve D has no singularities except ordinary double points and D has genus ≥ 2, then $f\left(\mathbf{C}^{k}\right)$ must be constant. Unfortunately, the dual curve of a generic plane curve has cusps as well as ordinary double points, corresponding respectively to inflectional tangents and double tangents. Our main theorem is that if the dual curve of D has only these singularities and if the number of cusps is less than $2 g-2$ (where $g=$ genus of D), then no non-constant holomorphic map f : $\mathbf{C}^{k} \rightarrow \mathbf{P}_{2}$ omits D from its image. The preceding hypothesis is equivalent to class $(D)<\frac{1}{2} \operatorname{deg}(D)$. (See formulas in section 1).

In section one we recall some standard facts about plane algebraic curves. We will then give two independent proofs of the main theorem-one by differential geometry using negative curvature methods in section two, and one by Nevanlinna theory in section three. Each proof gives a stronger theorem, but in different directions.

The authors wish to thank the Guillemet family for their hospitality while this result was proved.

1. Preliminaries about plane curves.

We recall a few basic facts about plane curves. To \mathbf{P}_{2} is associated the dual projective space $\mathbf{P}_{2}{ }^{*}$ consisting of the set of lines in \mathbf{P}_{2}. In terms of coordinates, the point $\left[a_{0}, a_{1}, a_{2}\right]$ is associated to the line $a_{0} z_{0}+a_{1} z_{1}+a_{2} z_{2}=0$. Given a plane curve $D \subset \mathbf{P}_{2}$, the dual curve $D^{*} \subset \mathbf{P}_{2}{ }^{*}$ consists of those lines tangent to D. The degree of D^{*} is called the class of D, here denoted c. The curves D and D^{*} are birationally equivalent, and the genus of their desingularization is denoted by g.

The singularities of D and D^{*} are related by Plücker's formulas. They cannot both have only nodes and no worse singularities. However, generically D and

Received October 8, 1975. The authors gratefully acknowledge the help of the N.S.F.

