CONVEX SETS OF OPERATORS ON THE DISK ALGEBRA

JOHN N. MCDONALD

Section 1. Introduction.

Let A denote the disk algebra equipped with the sup-norm. Let P denote the set of bounded linear operators mapping A to A which fix 1 and have norm 1. In [2] Rochberg considered sets of the form

$$
K(F, G)=\{T \in P \mid T F=G\}
$$

where F and G are inner functions in A, and F is non-constant. $K(F, G)$ is a face of P, i.e., $c U+(1-c) V \in K(F, G)$ where $U, V \in P$ and $c \in(0,1)$ implies $U, V \in K(F, G)$. Thus, any extreme point of $K(F, G)$ will be an extreme point of P. Rochberg proved that the real dimension of $K(F, G)$ is always $\leq(m-1)(m+1)$ where n and m are, respectively the number of zeros of F and G (counting multiplicity). He was also able to construct extreme points of $K(F, G)$ for certain choices of F and G. The results of [2] do not rule out the possibility of $K(F, G)$ being empty.

In this paper, we extend Rochberg's work by showing that $K(F, G)$. always has an extreme point and by showing that the real dimension of $K(F, G)$ is equal to $(n-1)(m+1)$. We also discuss the case where $F=Z^{n}$ and $G=Z^{m}$, where Z is the identity function on the unit disk and n and m are integers with $n \geq 1, m \geq 0$. In particular, we give a complete description of the set of extreme elements of $K\left(Z^{n}, Z\right)$.

Section 2. $K(F, G)$ has an extreme point.

Let D be the unit disk centered at 0 and let Γ be the boundary of D. We will use \mathbb{Q} to denote the sub-algebra of A consisting of functions which can be continued analytically across Γ. Let $f \in \mathbb{a}$ and let γ be a circle centered at 0 , having radius >1 such that f and F are analytic on γ and its interior. Define $T_{0} f$ by

$$
\begin{equation*}
T_{0} f(w)=(2 \pi i n)^{-1} \int_{\gamma} f(\xi) F^{\prime}(\xi)(G(w)-F(\xi))^{-1} d \xi \tag{1}
\end{equation*}
$$

for $w \in \bar{D}$. Note that $T_{0} f(w)=n^{-1} \sum_{F^{F}(u)=G(w)} f(u) .\left\|T_{0} f\right\| \leq\|f\|$. Hence, the linear operator $f \rightarrow T_{0} f$ carries \mathbb{Q} into A, has norm 1, and satisfies $T_{0} F=G$. Since \mathbb{Q} is dense in A, it follows that the map $f \rightarrow T_{0} f$ has a unique extension, denoted by T_{0}, to all of A. It is clear that $T_{0} \in K(F, G)$. We will call T_{0} the center of $K(F, G)$. We have proved the following:

Received October 24, 1974. Revision received March 28, 1975.

