RANDOMLY CONTINUOUS FUNCTIONS AND SIDON SETS

DANIEL RIDER

1. Introduction. Drury [1] has shown that for compact abelian groups the union of two Sidon sets is also a Sidon set. The proof depends strongly on the use of Riesz products. In this paper a proof of Drury's theorem is given which uses Riesz products only for the set of projections of the infinite torus. It is part of a more general theorem which states that "continuous" can be replaced by "randomly continuous" in the definition of Sidon set.

Let G be a compact abelian group with dual group Γ . For a function $f \in L_1(G)$ or a measure $\mu \in M(G)$ the Fourier transform will be denoted by $\hat{f}(\text{resp. }\hat{\mu})$. To G we associate the infinite torus T° indexed by Γ ; that is $T^{\circ} = \prod_{\gamma \in \Gamma} T_{\gamma}$ where each T_{γ} is the circle group. φ_{γ} will denote the projection of T° onto T_{γ} .

For
$$f \in L_1(G)$$
 and $t \in T^{\infty}$ we consider the formal Fourier series on

(1)
$$\sum_{\mathbf{r}} \hat{f}(\gamma)\varphi_{\gamma}(t)\gamma(x) \qquad (x \in G).$$

f is said to be randomly continuous if, for almost all $t \in T^*$, (1) is the Fourier series of a continuous function. Necessary conditions and sufficient conditions for f to be randomly continuous (at least on the circle group) have been given by Salem and Zygmund [6] (see also [2], [3]).

Let C(G) and R(G) be the spaces of continuous and randomly continuous functions on G and let A(G) be the space of functions with absolutely convergent Fourier series. For the sake of a neat diagram we also define C'(G) as those $f \in L_1(G)$ such that (1) is the Fourier series of a continuous function for at least one $t \in T^*$. Then

(2)
$$A(G) \subset R(G) \subset C'(G) \subset L_2(G).$$

If $B \subset L_1(G)$ and $E \subset \Gamma$ then B_E will denote those $f \in B$ such that \hat{f} is supported by E. A set E is called a Sidon set if $C_E = A_E$. Clearly this is the same as saying $C'_E = A_E$.

THEOREM 1. If $R_E = A_E$ then $C'_E = A_E$.

This says that E is Sidon if and only if every randomly continuous E function has an absolutely convergent Fourier series.

The problem with considering the union of Sidon sets is that if $f \in C(G)$ and $E \subset \Gamma$ then it is not always true that $\sum_{E} \hat{f}(\gamma)\gamma \in C(G)$. However it is

Received March 15, 1975. This research was supported in part by NSF Grant GP-33897 X2.