RESTRICTIONS OF H^p FUNCTIONS TO THE DIAGONAL OF THE POLYDISC

P. L. DUREN AND A. L. SHIELDS

A function $f(z) = f(z_1, \dots, z_n)$ analytic in the polydisc U^n is said to be of class $H^p(U^n)$, 0 , if the integrals

$$\int_{T^n} |f(r\zeta)|^p dm_n(\zeta), \qquad 0 < r < 1,$$

are bounded, where T^n is the torus and m_n is the normalized Lebesgue measure on T^n . The Bergman space A^p consists of all functions f analytic in the unit disc for which the area integral

$$\int_0^{2\pi} \int_0^1 |f(re^{i\theta})|^p r \, dr \, d\theta < \infty \, .$$

For n = 2 and for p = 1, 2, Walter Rudin [3, pp. 53, 69] showed that if $f \in H^{p}(U^{n})$, then its restriction $g(w) = f(w, w, \dots, w)$ to the diagonal of U^{n} belongs to A^{p} ; and he posed the problem to extend these results to other values of p and n, and to other subvarieties in place of the diagonal. The following theorem constitutes a partial solution to Rudin's problem.

THEOREM 1. Suppose $0 and <math>n \geq 2$. Let $f \in H^{p}(U^{n})$, and let g be the restriction of f to the diagonal. Then

$$\int_0^{2\pi} \int_0^1 |g(re^{i\theta})|^a (1-r)^{na/p-2} r \, dr \, d\theta < \infty.$$

COROLLARY. If $f \in H^{p}(U^{2})$, then $g \in A^{p}$, 0 .

Since $|f(z)|^{\lambda}$ is *n*-subharmonic for each $\lambda > 0$, a trivial estimate of the Poisson kernel shows that

$$|g(are^{i\theta})|^{p} \leq C(1-r)^{-n}, \quad 0 < r < 1.$$

Thus it suffices to prove the theorem for q = p, in which case it is an immediate consequence of the following more general theorem.

THEOREM 2. Suppose $2 \le p < \infty$ and $n \ge 2$. Then for some constant C and for all nonnegative n-subharmonic functions u in U^n ,

$$\int_0^{2\pi} \int_0^1 \left[u(re^{i\theta}, \cdots, re^{i\theta}) \right]^p (1-r)^{n-2} r \, dr \, d\theta \leq C \, \lim_{r \to 1} \, \int_{T^n} \left[u(r\zeta) \right]^p \, dm_n(\zeta).$$

Received July 22, 1974. Revision received June 16, 1975.