THE UNCERTAINTY PRINCIPLE IN RECONSTRUCTING FUNCTIONS FROM PROJECTIONS

B. F. LOGAN

Contents

1.	Introduction	661
2.	Main results	664
3.	Proofs of Theorems 1 and 2	669
4.	Proof of Theorem 3	683
5.	Estimates for $\lambda_n(c)$	685
	5(a). Upper bounds from Schwarz's inequality	686
	5(b). Upper bounds for $c \gg n$	690
	5(c). Lower bounds for $c = n + O(n^{\frac{1}{3}})$	693
	5(d). Lower bound for $c = n + O(n^{\frac{1}{2}})$	697
	5(e) Lower bounds for $c \gg n$	699

§1. Introduction.

Suppose f(x, y) vanishes for $x^2 + y^2 > 1$ and belongs to L^2 over the unit disc $D, x^2 + y^2 \leq 1$. We rotate f through an angle θ by the change of variables,

(1)
$$\begin{cases} x = t \cos \theta - u \sin \theta \\ y = t \sin \theta + u \cos \theta \end{cases} \begin{cases} t = x \cos \theta + y \sin \theta \\ u = -x \sin \theta + y \cos \theta \end{cases}$$

and then integrate on u to define the projection of f in the direction θ :

(2)
$$P_{f}(t, \theta) = \int_{-\infty}^{\infty} f(t \cos \theta - u \sin \theta, t \sin \theta + u \cos \theta) du.$$

We note that

(3)
$$P_f(t, \theta + \pi) = P_f(-t, \theta).$$

The integral in (2) may not exist for every t but a simple application of Schwarz's inequality shows that

(4)
$$\int_{-1}^{1} \frac{|P_f(t, \theta)|^2 dt}{\sqrt{1-t^2}} \le 2 \iint_D |f(x, y)|^2 dx dy.$$

There is a well-known relation between the Fourier transform of the projection and the two-dimensional Fourier transform of f. We have from (2) and (1)

Received June 16, 1975.