EQUICONTINUITY THEOREM WITH AN APPLICATION TO VARIATIONAL INTEGRALS

O. MARTIO

1. Introduction

Let $G \subset \overline{R}^n$ be a domain and $x \in \partial G$. We say that $M_x < \infty$ if there exists a non-degenerate continuum $C \subset G \cup \{x\}$ such that $x \in C$ and the *n*-modulus of the path family joining C and ∂G in G is finite. We prove, in Theorem 4.6, that a family \mathfrak{M} of continuous, monotone functions $u : \overline{G} \to R$ with uniformly bounded *n*-Dirichlet integral

$$\int_{G\cap R^n} |\nabla u|^n \, dm$$

is equicontinuous on \overline{G} if $\mathfrak{M} \mid \partial G$ is equicontinuous and if for each point $x \in \partial G$ the condition $M_x < \infty$ is not satisfied. This theorem is a generalization of the results in [7] and in [5]. In [7, 4.3.4] this fact was proved for Lipschitz-domains and in [5] for quasiconformally collared domains. Theorem 4.6 seems to be new even for n = 2.

In chapter 5 we apply the above result to solve the Dirichlet problem associated with a wide class of kernels $F(x, u(x), \nabla u(x))$ in "the borderline case" $F(x, p, q) \approx |q|^n$.

2. Preliminaries

2.1. Notation. The two point compactification of R is denoted by R. We let \mathbb{R}^n denote the euclidean *n*-space with the usual norm | | and for $x \in \mathbb{R}^n$ we write $x = (x_1, \dots, x_n) = x_1e_1 + \dots + x_ne_n$ where e_1, \dots, e_n are coordinate unit vectors of \mathbb{R}^n . \mathbb{R}^n means the one point ∞ compactification of \mathbb{R}^n . For each set $A \subset \mathbb{R}^n$ we let $\mathbb{C}A$, \overline{A} , ∂A , and int A denote the complement, closure, boundary, and interior of A, all taken with respect to \mathbb{R}^n . d(A) is the euclidean diameter of A. Given two sets A and B in \mathbb{R}^n , $A \setminus B$ is the set theoretic difference of A and B and d(A, B) the euclidean distance of A and B. A continuum in \mathbb{R}^n is a compact connected set which contains more than a point. Given $x \in \mathbb{R}^n$ and r > 0, we let $\mathbb{B}^n(x, r)$ denote the open ball $\{y \in \mathbb{R}^n : |y - x| < r\}$ and $\mathbb{S}^{n-1}(x, r) = \partial \mathbb{B}^n(x, r)$. We shall also employ the abbreviations $\mathbb{B}^n(r) = \mathbb{B}^n(0, r)$, $\mathbb{B}^n = \mathbb{B}^n(1)$, $\mathbb{S}^{n-1}(r) = \mathbb{S}^{n-1}(0, r)$, and $\mathbb{S}^{n-1} = \mathbb{S}^{n-1}(1)$.

The Lebesgue measure of a set $A \subset \mathbb{R}^n$ will be written as m(A). ω_{n-1} means the (n-1)-measure of S^{n-1} .

Received March 18, 1975.