INVARIANT REGULAR IDEALS IN BROWN-PETERSON HOMOLOGY

BY PETER S. LANDWEBER

1. Introduction. The coefficient ring $BP_* = \pi_*(BP)$ of Brown-Peterson homology is a polynomial ring

$$BP_* = \mathbf{Z}_{(p)}[v_1, v_2, \cdots]$$

where v_i has degree $2(p^i - 1)$ and $\mathbf{Z}_{(p)}$ denotes the integers localized at the prime p [2, 4]. It is often convenient to put $v_0 = p$.

In Brown-Peterson homology and cohomology one has stable operations r_E indexed by exponent sequences $E = (e_1, e_2, \cdots)$. In particular, the r_E act on BP_* , and an ideal I in BP_* is called *invariant* if $r_E(I) \subset I$ for all the operations r_E .

One knows [4, 6] that the only invariant *prime* ideals in BP_* are those of the form $I_0 = 0$, $I_n = (v_0, \dots, v_{n-1})$ for $n = 1, 2, 3, \dots$, and $I_{\infty} = (v_0, v_1, \dots) = \bigcup I_n$.

On the other hand, once one gets away from prime ideals, one no longer has much control over invariant ideals. Our aim here is to show that one can get a good grasp on the family of invariant *regular* ideals in BP_* . These ideals are only slightly more general than the invariant ideals of the form $(p^{a_0}, v_1^{a_1}, \dots, v_n^{a_n})$ considered recently by David Baird [3].

Henceforth, all ideals are to be graded and all elements are to be homogeneous.

2. Statement of results. Let α_0 , \cdots , α_n be a sequence of elements of BP_* . We call the sequence *invariant* if $r_E\alpha_0 = 0$ for $E \neq 0$ and $r_E(\alpha_i)\epsilon(\alpha_0, \cdots, \alpha_{i-1})$ for $E \neq 0$ and i > 0. Notice that in this case, each ideal $(\alpha_0, \cdots, \alpha_i)$ is invariant.

Notice also

(2.1) LEMMA. If $(\alpha_0, \dots, \alpha_n)$ is an invariant ideal and

 $\deg \alpha_0 \leq \deg \alpha_1 \leq \cdots \leq \deg \alpha_n ,$

then α_0 , \cdots , α_n is an invariant sequence.

Proof. If $E \neq 0$ then $r_E \alpha_i$ has smaller degree than α_i . The result follows at once.

In particular, each finitely generated invariant ideal in BP_* is generated by an invariant sequence.

Received February 10, 1975. Revision received April 15, 1975. Research supported in part by an NSF grant and a NATO fellowship.