DISINTEGRATION OF MEASURES AND THE VECTOR-VALUED RADON-NIKODYM THEOREM

G. A. EDGAR

1. Introduction.

Classical vector-valued Radon-Nikodym theorems include [2] [9] [11]. In the last ten years, several other general vector-valued Radon-Nikodym theorems have been proved ([10] [12] [13] [7] [5] among many others). Such a theorem is used here to prove a general disintegration theorem for measures.

The main results (Theorem 3.1 and Corollary 3.3) are as follows. If $\langle X, \mathfrak{G}(X) \rangle$ is a topological space with its Baire sets, if $\langle S, \mathfrak{F} \rangle$ is an arbitrary measurable space, and if μ is a probability measure on $\langle S \times X, \mathfrak{F} \times \mathfrak{G}(X) \rangle$ whose projection on X is tight, then μ has a strict disintegration with respect to the projection on S. If $\langle X, \mathfrak{G}(X) \rangle$ and $\langle S, \mathfrak{F} \rangle$ are as above, if $p: X \to S$ is a measurable function, and if ν is a tight Baire probability measure on X, then ν has a disintegration with respect to p. It is a routine exercise (which we do not do explicitly here) to extend these results to certain infinite measures. The results are apparently not special cases of previously known disintegration theorems (see [8, §II], [1, p. 58, Theorem 1], [4, p. 150, Theorem 5], [6]). More importantly, the proofs given here are quite different (and perhaps simpler) than those referred to.

2. Preliminaries.

Let V be a locally convex, Hausdorff, topological vector space, and let $\langle S, \mathfrak{F}, \lambda \rangle$ be a probability space. A function $m : \mathfrak{F} \to V$ is called a V-valued measure iff, for every sequence $\langle E_n \rangle_{n=1}^{\infty}$ of disjoint members of \mathfrak{F} , we have $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$, where the series converges in the topology of the space V. The measure m is said to be absolutely continuous with respect to λ iff m(E) = 0for all $E \in \mathfrak{F}$ with $\lambda(E) = 0$. The average range of m is the set $\{m(E)/\lambda(E) : E \in \mathfrak{F}, \lambda(E) > 0\}$.

The Radon-Nikodym theorem we will be using is the following. An elementary proof of a more general theorem is given in [5, Theorem 4.9].

2.1 THEOREM. Let V be a locally convex space, and let $\langle S, \mathfrak{F}, \lambda \rangle$ be a probability space. Let $m : \mathfrak{F} \to V$ be a measure. Assume (1) m is absolutely continuous with respect to λ , and (2) m almost has relatively compact average range, i.e., for every $\epsilon > 0$, there is $E_0 \subset \mathfrak{F}$ such that $\lambda(E_0) \ge 1 - \epsilon$ and $\{m(E)/\lambda(E) : E \subset \mathfrak{F}, E \subseteq E_0, \lambda(E) > 0\}$ is relatively compact. Then there is a function $\varphi : S \to V$

Received March 10, 1975.