ISOMETRIES OF H^{∞}

P. R. AHERN AND ROBERT SCHNEIDER

If D is a bounded open set in the complex plane which is a "maximal" domain for the space $H^{\circ}(D)$ of bounded holomorphic functions in D, then it is shown in [15] that any surjective isometry, Φ, of $H^{\infty}(D)$ is of the form $\Phi(f)=\alpha \cdot f \circ \varphi$ where $|\alpha|=1$ and φ is a conformal mapping of D onto itself. In this note we consider the surjective isometries of $H^{(\omega}(D)$ where D is a bounded domain in \mathbf{C}^{N}. It follows from general considerations, see [7], that any surjective isometry Φ of $H^{\omega}(D)$ is of the form $\Phi(f)=\alpha \cdot \Phi_{1}(f)$ where $|\alpha|=1$ and Φ_{1} is an algebra automorphism of $H^{\infty}(D)$, so in what follows we will consider only automorphisms Φ of $H^{\text {© }}(D)$. It also follows from general considerations that if Φ is an automorphism of $H^{\infty}(D)$ then $\Phi f=\hat{f} \circ \varphi$ where φ is a homeomorphism of the maximal ideal space of $H^{\oplus}(D)$ and \hat{f} is the Gelfand transform of f. Hence we are looking for conditions on D that will imply that $\varphi(\mathrm{D})=D$ and that φ is biholomorphic on D.

If D_{1} is a domain containing D and every function $f \in H^{\infty}(D)$ extends to be holomorphic in D_{1} then any biholomorphic mapping of D_{1} onto itself will give rise to an automorphism of $H^{\infty}(D)$, so the problem of finding the domains in \mathbf{C}^{N} that are maximal for bounded holomorphic functions is clearly related to the automorphism question. We discuss this in the first section for $N=1$. For $N>1$ the problem is still open. We give some examples, discuss differences between the cases $N=1$ and $N>1$, and give an example which answers in the negative a question of Kobayashi [10] concerning the Caratheodary metric. In the second section we describe a class of domains D in \mathbf{C}^{N} for which every automorphism Φ of $H^{\infty}(D)$ is of the form $\Phi f=f \circ \varphi$ where φ is a biholomorphic mapping of D onto itself. This class includes the strictly pseudoconvex domains with smooth boundary and the non-degenerate OkaWeil domains.

1. Let D be a bounded connected domain in \mathbf{C}^{N}. If $F \subseteq H^{\infty}(D)$ and $K \subseteq D$ we define

$$
\hat{K}_{F}=\left\{z \in D:|f(z)| \leq\|f\|_{K} \text { for all } f \in F\right\}
$$

where $\|f\|_{K}$ denotes the supremum of f on K. We say that D is F-convex if whenever K is compact, \hat{K}_{F} is compact. We say that D is a domain of bounded holomorphy if for every $a \in \partial D$ there is a function $f \in H^{\infty}(D)$ that has no analytic continuation through a (see [16] for a more precise statement). In

Received September 25, 1974. The first author was partially supported by an NSF grant. The second author was partially supported by a grant from the research foundation of CUNY.

