TRANSITIVE HOROCYCLES FOR FUCHSIAN GROUPS

PETER J. NICHOLLS

1. Introduction. A Fuchsian group G is a discrete group of bilinear transforms of the form

$$
V(z)=\frac{a z+b}{c z+d}, \quad a d-b c=1
$$

each of which preserve a disc (or half plane). We consider only groups which preserve the unit disc $\Delta=\{z:|z|<1\}$ and none of whose transforms, except the identity, fix infinity (any Fuchsian group is conjugate to such a group). In this case the elements of G are of the form

$$
\begin{equation*}
V(z)=\frac{a z+\bar{c}}{c z+\bar{a}}, \quad|a|^{2}-|c|^{2}=1, \quad c \neq 0 . \tag{1}
\end{equation*}
$$

The isometric circle of V is the circle $\{z:|c z+\bar{a}|=1\}$ bcing the set of points z for which $\left|V^{\prime}(z)\right|=1$.

The set of points on $\partial \Delta$ at which G does not act discontinuously is the limit set $L(G)$. It is well known that $L(G)$ is the set of points of accumulation of centers of isometric circles belonging to transforms in G [4, p. 42]. The approximation is, however, not uniform and some interest has recently been shown in a class of limit points called points of approximation which are approximated very well by centers of isometric circles [3, 7]. In this paper we will consider a larger class of limit points for which the approximation is still good, derive some properties and use our results to investigate a transitivity question for Fuchsian groups. In section 3 we describe how our results may be extended to Kleinian groups.

We denote by D the Ford fundamental region for G, being the set of points in Δ exterior to all isometric circles of transforms in G. Note that D is also the Dirichlet fundamental polygon for G centered at the origin [6, p. 151]. We set $e=\partial D \cap\{|z|=1\}$ and $E=\cup_{V \in G} V(e)$.

A horocycle is a euclidean circle which is internally tangent to $\partial \Delta$. The point of contact with $\partial \Delta$ is called the point at infinity on the given horocycle. The horocycle with euclidean radius $r, 0<r<1$, and point at infinity ξ will be denoted $C(\xi, r)$.

Our first result is the following.
Theorem 1. Let G be a Fuchsian group and $\xi \in \partial \Delta$ then the following statements are equivalent.
(i) $\xi \notin E$

Received August 20, 1974.

