SIMPLICITY OF THE C*-ALGEBRA ASSOCIATED WITH THE FREE GROUP ON TWO GENERATORS

ROBERT T. POWERS

Introduction. At a conference held in Baton Rouge in 1967 J. Dixmier posed the question of whether every simple C^{*}-algebra is generated by its projections. A couple of years later R. Kadison suggested to us that the C^{*}-algebra associated with the left regular representation of the free group on two generators should provide an example of a simple C^{*}-algebra without projections. In this paper we show that this algebra is simple, i.e., it has no non trivial two-sided ideals. We still do not know if this algebra contains projections.

Notations and definitions. Let \mathfrak{F} be the free group on two generators a and b. The elements $g \in \mathfrak{F}$ often called words, are expressions of the form $a^{n_{1}} b^{m_{1}} a^{n_{2}} \cdots b^{n_{r}}$ or $b^{m_{1}} a^{n_{1}} b^{m_{1}} \cdots b^{n_{r}}$ where $n_{i}, m_{i}=0, \pm 1, \pm 2, \cdots$. A word is in reduced form if all the n_{i} and m_{i} are not zero. To multiply two group elements g_{1} and g_{2} one writes the combined word $g_{1} g_{2}$ and then reduces this word if necessary, e.g., $\left(a b a^{2}\right)\left(a^{2} b^{-1} a\right)=a b a^{4} b^{-1} a$ and $\left(a b a^{2}\right)\left(a^{-2} b^{-1} a\right)=a^{2}$.

Let $\mathfrak{S}=L^{2}(\mathfrak{F})$ be the Hilbert space of all complex valued functions f on \mathfrak{F} such that $\sum_{0 \in \mathfrak{F}}|f(g)|^{2}<\infty$. We use the physicist's inner product on \mathfrak{S} (which is linear in the second factor) given by

$$
(f, h)=\sum_{o \in \varsubsetneqq} \overline{f(g)} h(g) .
$$

For each $g_{1} \in \mathfrak{F}$ we define the unitary operator $U\left(g_{1}\right)$ on \mathfrak{S} given by

$$
\left(U\left(g_{1}\right) f\right)(g)=f\left(g_{1}^{-1} g\right) \quad \text { for all } \quad f \in \mathfrak{S} .
$$

One can easily show that $g \rightarrow U(g)$ is a unitary representation of \mathfrak{F} on \mathfrak{J}. This representation is called the left regular representation of \mathfrak{F} on $L^{2}(\mathfrak{F})$.

Let $\mathfrak{U}_{0}(\mathfrak{F})$ be the *-algebra of operators A on $\mathfrak{5}$ of the form

$$
A=\sum_{i=1}^{n} \alpha_{i} U\left(g_{i}\right)
$$

with α_{i} complex numbers and $g_{i} \in \mathfrak{F}$ and $n=1,2, \cdots$. Let $\mathfrak{H}(\mathfrak{F})$ be the C^{*}-algebra formed by taking the closure of $\mathfrak{\Re}_{0}(\mathfrak{F})$ in the operator norm topology. We will prove that $\mathfrak{A}(\mathfrak{F})$ is simple.

Let $e_{0} \in L^{2}(\mathfrak{F})$ be the function which is one at the identity e and zero off the identity, i.e., $e_{0}(e)=1$ and $e_{0}(g)=0$ for $g \neq e$. Let τ be the state on $\mathfrak{A}(\mathfrak{F})$

Received May 21, 1974. Revised version received June 15, 1974. Work supported in part by a National Science Foundation Grant. The author is an Alfred P. Sloan Foundation Fellow.

