RINGS WITH AN INTEGRAL ELEMENT WHOSE CENTRALIZER SATISFIES A POLYNOMIAL IDENTITY

MARTHA SMITH

1. Introduction. S. Montgomery [5] has recently shown that if the centralizer of a suitable algebraic element of a ring satisfies a polynomial identity (PI), then the ring must be PI. In this paper we extend these results to a more general setting.

Montgomery imposed the conditions that an element a have some power a^n lying in the center, where both a and n are invertible in the ring. The invertibility of a enabled her to work with the inner automorphism induced by a. We drop this assumption and work instead with the derivation induced by a. Together, the invertibility of a and n form a sort of separability condition. We replace this in Section 2 by a more general separability condition described in the next paragraph.

Let Ω be a commutative integral domain with identity, R an Ω -algebra and $a \in R$ integral over Ω . Let D denote the derivation Dx = ax - xa on R (or any other ring containing a). Since D is the difference of the left and right multiplications by a, which are both integral over Ω and commute, D must also be integral over Ω . We will assume in most of Section 2 that D satisfies a polynomial $f(\lambda) \in \Omega[\lambda]$ such that f'(0) acts invertibly on R. This may naturally be regarded as a separability condition, as the following Lemma shows.

LEMMA 1. Let Ω , R, a, D be as above. Suppose Ω is a field and f is the minimum polynomial of D over Ω . If a is separable over Ω , then $f'(0) \neq 0$. If R is semiprime and the minimum polynomial of a splits in Ω , then $f'(0) \neq 0$ implies a is separable over Ω .

Proof. Let $\overline{\Omega}$ be any field extension of Ω , $R' = \overline{\Omega} \bigotimes_{\alpha} R$. It is easy to see that $1 \bigotimes a$ and $1 \bigotimes D$ have the same minimal polynomials over $\overline{\Omega}$ as a and D, respectively, do over Ω . Thus for the first part we may without loss of generality suppose the minimal polynomial of a splits in Ω . Let $\alpha_1, \dots, \alpha_n$ be the roots of this minimal polynomial. Then since a is separable

$$R = \sum_{i, j=1}^{n} \bigoplus R_{ij} ,$$

a direct sum as Ω -vector spaces, where for $x \in R_{ij}$, $ax = \alpha_i x$, $xa = \alpha_j x$. Suppose $D^2 r = 0$. Write $r = \sum r_{ij}$, $r_{ij} \in R_{ij}$. Then

$$0 = D^2 r = \sum (\alpha_i - \alpha_j)^2 r_{ij}$$

implies $r_{ij} = 0$ except when i = j. Thus Dr = 0.

Received April 4, 1974. Revised version received August 12, 1974.