F-PROJECTIVE HOMOTOPY AND F-PROJECTIVE STABLE STEMS

DUANE RANDALL

Let F denote either the classical real (R), complex (C) or quaternionic (Q) numbers. Let

$$
h_{F}: S^{d p(n+1)-1} \rightarrow F P^{n}
$$

denote the Hopf fiber bundle projection with fiber $S^{d^{p-1}}$ for $n \geq 0$ where d_{F} is the real vector space dimension of F. We work in the topological category of pointed spaces and pointed maps. Given a space X and a positive integer m, we define

$$
\begin{aligned}
\pi_{m}{ }^{F}(X) & =h_{F}{ }^{*}\left[F P^{n}, X\right] & & \text { if } d_{F}(n+1)=m+1 \\
& =0 & & \text { if } d_{F} \text { does not divide } m+1
\end{aligned}
$$

The sets $\pi_{m}{ }^{F}(X)$ form the F-projective homotopy of X. If X is either [$m+1 / 2$]-connected or an associative H-space with an inverse, then $\pi_{m}{ }^{F}(X)$ is a subgroup of $\pi_{m}(X)$. Note that $\pi_{m}{ }^{Q}(X) \subseteq \pi_{m}{ }^{c}(X) \subseteq \pi_{m}{ }^{n}(X)$ via the maps $\bar{h}_{c}: R P^{2 s+1} \rightarrow C P^{s}$ and $\bar{h}_{Q}: C P^{2 t+1} \rightarrow Q P^{t}$ induced from h_{c} and h_{θ}.

For example, let us take X to be a topological group G. Then $\pi_{d F n-1}{ }^{F}(G)$ can be regarded as the set of equivalence classes of principal G-bundles ξ over $S^{d p n}$ with $\theta^{*} \xi$ trivial where $\theta: F P^{n} \rightarrow S^{d F n}$ collapses $F P^{n-1}$. Also, any odd-dimensional homotopy class which can be halved must be R-projective since $2 \pi_{m}(X) \subseteq$ $\pi_{m}{ }^{R}(X)$ for m odd. (See [6] for an application).

In this paper we determine F-projective stable stems in dimensions ≤ 6. The R-projective stable stems have been found by Rees [7] and Strutt [8] through dimension 5 and through higher dimensions by Bredon [1] using various methods. We also describe the F-projective homotopy of the real and complex projective spaces in $\S 3$ in terms of the F-projective homotopy of spheres. We thank a referee for his helpful suggestions.
§1. Stable Stems and Cohomology Operations. We first establish some notation. We use Z_{m} for $Z / m Z$. The coefficient group for cohomology is understood to be Z_{2} whenever omitted. We let α, β, and γ denote generators for $H^{*}\left(R P^{\infty}\right), H^{*}\left(C P^{\infty} ; Z\right)$; and $H^{*}\left(Q P^{\infty} ; Z\right)$ respectively. Let $\rho_{t}: H^{*}(; Z) \rightarrow$ $H^{*}\left(; Z_{t}\right)$ be the morphism corresponding to reduction $Z \rightarrow Z_{t} . P_{p}{ }^{i}$ represents the i th $\bmod p$ Steenrod reduced power. An element $\rho \in \pi_{i}{ }^{\circ}$ of the stable

Received May 23, 1974. Revised version received September 30, 1974. This research was supported by funds from CNPq, CAPES and FINEP of Brazil.

