F-PROJECTIVE HOMOTOPY AND F-PROJECTIVE STABLE STEMS

DUANE RANDALL

Let F denote either the classical real (R), complex (C) or quaternionic (Q) numbers. Let

$$h_F: S^{d_F(n+1)-1} \to FP^n$$

denote the Hopf fiber bundle projection with fiber $S^{d_{F}-1}$ for $n \geq 0$ where d_{F} is the real vector space dimension of F. We work in the topological category of pointed spaces and pointed maps. Given a space X and a positive integer m, we define

$$\pi_m^F(X) = h_F^*[FP^n, X] \quad \text{if } d_F(n+1) = m+1$$
$$= 0 \qquad \qquad \text{if } d_F \text{ does not divide } m+1$$

The sets $\pi_m^{F}(X)$ form the *F*-projective homotopy of *X*. If *X* is either [m + 1/2]-connected or an associative *H*-space with an inverse, then $\pi_m^{F}(X)$ is a subgroup of $\pi_m(X)$. Note that $\pi_m^{Q}(X) \subseteq \pi_m^{C}(X) \subseteq \pi_m^{R}(X)$ via the maps $\bar{h}_{\mathcal{C}}: RP^{2s+1} \to CP^s$ and $\bar{h}_{Q}: CP^{2t+1} \to QP^t$ induced from $h_{\mathcal{C}}$ and h_{Q} .

For example, let us take X to be a topological group G. Then $\pi_{d_{F^{n-1}}}^{F}(G)$ can be regarded as the set of equivalence classes of principal G-bundles ξ over $S^{d_{F^n}}$ with $\theta^*\xi$ trivial where $\theta: FP^n \to S^{d_{F^n}}$ collapses FP^{n-1} . Also, any odd-dimensional homotopy class which can be halved must be R-projective since $2\pi_m(X) \subseteq \pi_m^{R}(X)$ for m odd. (See [6] for an application).

In this paper we determine F-projective stable stems in dimensions ≤ 6 . The R-projective stable stems have been found by Rees [7] and Strutt [8] through dimension 5 and through higher dimensions by Bredon [1] using various methods. We also describe the F-projective homotopy of the real and complex projective spaces in §3 in terms of the F-projective homotopy of spheres. We thank a referee for his helpful suggestions.

§1. Stable Stems and Cohomology Operations. We first establish some notation. We use Z_m for Z/mZ. The coefficient group for cohomology is understood to be Z_2 whenever omitted. We let α , β , and γ denote generators for $H^*(RP^*)$, $H^*(CP^*; Z)$; and $H^*(QP^*; Z)$ respectively. Let $\rho_t : H^*(; Z) \to H^*(; Z_t)$ be the morphism corresponding to reduction $Z \to Z_t$. P_p ' represents the *i*th mod p Steenrod reduced power. An element $\rho \in \pi$, of the stable

Received May 23, 1974. Revised version received September 30, 1974. This research was supported by funds from CNPq, CAPES and FINEP of Brazil.