ON A CLASS OF HYPERSURFACES OF R²ⁿ⁺¹

KINETSU ABE

Introduction. In this paper we give a partial answer to the question regarding which complete Kählerian manifold can be immersed isometrically into Euclidean space as a real hypersurface.

As is well known, there is a broad class of Riemann surfaces which satisfy the above criterion; therefore, any Kählerian manifolds which are Kählerian products of any such Riemann surfaces and complex Euclidean space satisfy the same criterion in the natural fashion. What follows states a kind of converse.

THEOREM. Let M^{2n} be a complete connected Kählerian manifold of real dimension 2n, and furthermore, let M^{2n} be immersed by f isometrically into \mathbb{R}^{2n+1} . Then M^{2n} is a product of a Riemann surface and $\mathbb{C}^{n-1} = \mathbb{R}^{2(n-1)}$, provided either

Case 1. M^{2n} has non-negative scalar curvature, or

Case 2. M^{2n} has strictly negative scalar curvature, or

Case 3. The immersion f is real analytic.

Furthermore, the immersion f splits into an immersion of the Riemann surface into \mathbf{R}^3 and the natural identification of $\mathbf{C}^{n-1} = \mathbf{R}^{2^{(n-1)}}$ with the orthogonal complement of \mathbf{R}^3 in \mathbf{R}^{2n+1} . Thus the study of such Kählerian hypersurfaces is reduced to that of the usual surfaces in \mathbf{R}^3 under each condition given in the theorem. Now as a special case, we have

COROLLARY. Let S^2 be the standard sphere of dimension 2, and let $M^{2(n-1)}$ be any complete connected Kählerian manifold of dimension 2(n-1). Then $S^2 \times M^{2(n-1)}$ can be immersed isometrically into \mathbf{R}^{2n+1} if and only if $M^{2(n-1)} = \mathbf{R}^{2(n-1)} = \mathbf{C}^{n-1}$. The immersion is the product of the standard imbeddings of S^2 into \mathbf{R}^3 and \mathbf{C}^{n-1} onto $\mathbf{R}^{2(n-1)}$.

Kählerian manifolds which are isometrically immersed in Euclidean space as hypersurfaces are called real Kählerian hypersurfaces. Takahashi [8] and Ryan [7] have recently studied such Kählerian manifolds. In particular, Ryan [7] has determined all the complete connected real Kählerian hypersurfaces of spaceforms of non-zero curvature. Furthermore, he has obtained the result that any complete real Kählerian hypersurface of Euclidean space is locally either flat or a product of an open subset of a flat space and an open subset of a Riemann surface. Our result is a further pursuit of this line based on a lemma of Takahashi [8].

Preliminaries. Let M^{2n} be a connected complete Kählerian manifold occurring as a hypersurface in \mathbb{R}^{2n+1} . We denote by $\tilde{\nabla}$ and ∇ the Riemannian

Received January 25, 1974. Revised version received May 30, 1974.