THE FREE PART OF A TORUS ACTION AND RELATED NUMERICAL EQUALITIES

GLEN E. BREDON

1. Introduction. Let X be a locally compact space. Let G be the toral group $G=T^{k}$ or the elementary abelian group $G=Z_{p}{ }^{k}$. All cohomology groups will have coefficients in the rationals or in Z_{p} in these respective cases and are the sheaf theoretic cohomology groups with compact supports. We shall concentrate on the toral case $G=T^{k}$, and only briefly comment on the modifications needed for the other cases. We assume throughout that $\operatorname{dim} H_{c}{ }^{*}(X)<\infty$.

Let $G=T^{k}$ act on X and consider the open subspace $X_{f} \subset X$ of points with finite isotropy groups (trivial isotropy when $G=Z_{p}{ }^{k}$). We are interested in calculating the rational cohomology

$$
H_{c}{ }^{*}\left(X_{f}{ }^{*}\right)
$$

of the orbit space $X_{f}{ }^{*}=X_{f} / G$ of X_{f}. It is assumed that the cohomology of the fixed set X^{T} of each subtorus $T \subset G$ is known. We shall show how to calculate this in case X is totally nonhomologous to zero in $X^{G}=X \times_{G} E_{G}$. This is equivalent to the statement that

$$
\operatorname{dim} H_{c}{ }^{*}(X)=\operatorname{dim} H_{c}{ }^{*}\left(X^{G}\right)
$$

and will be assumed throughout. We also assume throughout that the number of isotropy groups is finite.

In the toral case, the assumption that X is totally nonhomologous to zero in X_{G} is equivalent to the degeneration of the spectral sequence of $X_{G} \rightarrow B_{G}$ and holds, for example, whenever X has zero cohomology in odd dimensions.

Our main theorem yields a collection of k ($=$ rank G) numerical formulas involving the Betti numbers of the fixed sets of subtori of G. The first formula is just the well known Euler characteristic formula $\chi(X)=\chi\left(X^{G}\right)$. The second is a generalization of the Borel formula

$$
\operatorname{dim} X-\operatorname{dim} X^{G}=\sum_{\text {corank } T=1}\left(\operatorname{dim} X^{T}-\operatorname{dim} X^{G}\right) ;
$$

which was proved by Borel [4] when X is a homology sphere and dim is formal dimension. A version of this for Poincaré duality spaces has been proved by Allday and Skjelbred [2, 10]. Our version also applies to Poincaré duality spaces but gives a somewhat different formula. It is more or less known in the sense that it is implicit in the literature. The third formula is a generalization of Golber's formula [9] for actions on a product of odd dimensional spheres. The general case was proved by Chang and Skjelbred [8]. The rest of the formulas are increasingly more complicated and are new.

Received April 17, 1974. Revised version received June 3, 1974.

