CLASSIFYING SPACES FOR SECTIONING MULTIPLES OF A SYMPLECTIC LINE BUNDLE

CHARLES F. PELTIER

The identification of R^{4n} with Q^n (*n*-dimensional quaternionic space) permits the definition of a fixed-point-free action of $S^3 = S_p(1)$ on $V_{4n,k}$, the Stiefel manifold of k frames in 4n-space. The orbit space $QV_{4n,k}$ has the following property: If X is a finite complex and a symplectic line bundle over X, then $n\xi$ (Whitney sum) has k linearly independent real sections iff there exists a map $f: X \to QV_{4n,k}$ such that $f^*\gamma_0 = \xi$ where γ_0 represents the symplectic line bundle over $QV_{4n,k}$ associated to the S^3 fibering $V_{4n,k} \to QV_{4n,k}$.

1. Preliminaries. We first establish notation to be used throughout the paper, and then state some useful preliminaries.

We will use $RE(x_i, y_i | i \in I)$ to denote the exterior algebra over a ring Rwith generators x_i, y_i in degree i, and will use $V(x_1, \dots, x_m)$ to denote the commutative associative algebra over Z_2 with generators x_1, \dots, x_m such that the monomials $x_1^{\epsilon_1} \cdots x_m^{\epsilon_m}$, $\epsilon_i = 0, 1$, form an additive basis. $C_{a,b}$ denotes the binomial coefficient $\binom{a}{b}$. Let ρ_G denote the universal coefficient map $H^*(; Z) \to H^*(; G)$, shortened to ρ_p for $G = Z_p$. Let $J_{2n,k}$ denote the set of all integers j such that (greatest integer in ((4n - k)/2) < j < 2n. Let ldenote the least element of $J_{2n,k}$ and t = 2n - l. We write $H^*(QP^*) =$ $Z[\xi], H^*(CP^*) = Z[\beta], K^*(QP^*) = Z[[z]], K^*(CP^*) = Z[[y]].$

We will use the description of $H^*(V_{4n,k})$ given in [9]. (1.1) $H^*(V_{4n,k}; Z_2) = V(x_{4n-k}, \cdots, x_{4n-1})$ where the subscript denotes degree, and $H^*(V_{4n,k}; Z)$ is generated by the free classes \bar{y}_{4n-k} , \bar{y}_{4n-1} , y_{4j-1} for $j \in J_{2n,k}$, with \bar{y}_{4n-k} omitted for odd k, and the 2-torsion classes $u_{s,t}$, P^{2i} for s, t, $j \in J_{2n,k}$ and s < t. Mod 2 reduction is given by $\rho_2(\bar{y}_i) = x_i$, $\rho_2(y_{4j-1}) = x_{2j}x_{2j-1} + x_{4j-1}$, $\rho_2(P^{2j}) = x_{2j}$, and $\rho_2(u_{s,t}) = x_{2s}x_{2t-1} + x_{2s-1}x_{2t}$.

Now consider the fibration $V_{4n,k} \to E_{4n,k} (= S^{\circ} \times_{S^{\circ}} V_{4n,k}) \to QP^{\circ}$ induced from the fibration $V_{4n,k} \to BSO(4n - k) \to BSO(4n)$ by the composition $r \circ c \circ n_{\gamma}$ classifying the *n*-fold sum of the Hopf bundle γ over QP° regarded as a real vector bundle. By construction $E_{4n,k}$ is the classifying space for finding k real sections of the *n*-fold sum of a symplectic line bundle over a finite-dimensional complex. The method of [11] gives: Proposition (1.2). The spaces $QV_{4n,k}$ and $S^{\circ} \times_{S^{\circ}} V_{4n,k}$ have the same homotopy type and the natural projection $i: V_{4n,k} \to QV_{4n,k}$ can be identified with the inclusion.

This identification will be implicitly used throughout the paper.

Received February 23, 1974. The material in this paper is contained in a Ph.D. thesis directed by A. Duane Randall at the University of Notre Dame.