ON CARTAN'S METHOD OF LIE GROUPS AND MOVING FRAMES AS APPLIED TO UNIQUENESS AND EXISTENCE QUESTIONS IN DIFFERENTIAL GEOMETRY

P. GRIFFITHS

TABLE OF CONTENTS

- 0. INTRODUCTION
- 1. TWO LEMMAS ON MAURER-CARTAN FORMS
- 2. LIE GROUPS AND MOVING FRAMES
- 3. EUCLIDEAN GEOMETRY
 - (a) Curves in \mathbb{R}^n
 - (b) Hypersurfaces in \mathbb{R}^{n+1}
- 4. HOLOMORPHIC CURVES IN PROJECTIVE SPACE
 - (a) Frenet frames and the Second Main Theorem
 - (b) Uniqueness and existence for holomorphic curves
 - (c) Discussion of the Plücker relations
- 5. RIGIDITY AND CONTACT
 - (a) The general problem
 - (b) Curves in Grassmannians
- 6. HOLOMORPHIC CURVES IN A GRASSMANNIAN
 - (a) Frames and rigidity for ruled surfaces
 - (b) Non-degeneracy and Schubert hyperplanes

0. INTRODUCTION.

These notes are an exposition of the philosophy due to Elie Cartan that, via the use of moving frames, the theory of Lie groups constitutes a powerful and elegant method for studying uniqueness and existence questions for submanifolds of a homogeneous space. This philosophy, as expounded in his beautiful book "Groupes finis et continus et la géométrie différentielle", Gauthier-Villars (Paris), is perhaps not as widely appreciated as it should be, especially as regards the higher order invariants of a submanifold. A possible reason for this is that, even though the basic Lie group statements underlying the theory are of a rather general nature, their application to geometry seems at present more adapted to special cases depending on subtle conditions of non-degeneracy, rather than constituting a vast general theory. It is the intricacy and beauty of these special cases which in the end justifies the general approach. Our purpose here is to present a somewhat updated and hopefully clear exposition of a portion of the Cartan philosopy, together with a few traditional and some new applications to geometry. In particular, we emphasize the case of holo-

Received June 13, 1974. This research was partially supported by NSF grant GP 38886.