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0. INTRODUCTION.

These notes are an exposition of the philosophy due to Elie Cartan that, via
the use of moving frames, the theory of Lie groups constitutes a powerful and
elegant method for studying uniqueness and existence questions for submanifolds
of a homogeneous space. This philosophy, as expounded in his beautiful book
“Groupes finis et continus et la géométrie différentielle”, Gauthier-Villars
(Paris), is perhaps not as widely appreciated as it should be, especially as
regards the higher order invariants of a submanifold. A possible reason for
this is that, even though the basic Lie group statements underlying the theory
are of a rather general nature, their application to geometry seems at present
more adapted to special cases depending on subtle conditions of non-degeneracy,
rather than constituting a vast general theory. It is the intricacy and beauty
of these special cases which in the end justifies the general approach. Our
purpose here is to present a somewhat updated and hopefully clear exposition
of a portion of the Cartan philosopy, together with a few traditional and some
new applications to geometry. In particular, we emphasize the case of holo-
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