# A THEOREM ON ENTIRE FUNCTIONS WITH APPLICATIONS TO TOEPLITZ OPERATORS 

I. N. BAKER, JAMES A. DEDDENS, J. L. ULLMAN

1. Introduction. In this note we state and prove a new theorem concerning the valency of entire functions. The initial motivation for Theorem 1 arose in an attempt to answer various questions concerning the commutant of analytic Toeplitz operators. In section 2 we present the proof of Theorem 1 and in section 3 we present its applications to the commutant of analytic Toeplitz operators.

Theorem 1. Let $\gamma$ denote the unit circumference $z=e^{i t}, 0 \leq t \leq 2 \pi$. For any $F$ analytic in $\bar{D}$ and $a \notin F(\gamma)$ let $\eta(F(\gamma), a)$ be the winding number of $F(\gamma)$ about $a$ and define

$$
k(F)=\inf \{\eta(F(\gamma), a): \eta(F(\gamma), a) \neq 0\}
$$

Then for any non-constant entire function $f$, there exists an entire function $h$ such that $f(z) \equiv h\left(z^{k}\right)$, where $k=k(f)$ and $k(h)=1$.

Remark. If $f$ is merely analytic in $\bar{D}$, it would be interesting to know whether there exist $\alpha_{1}, \cdots, \alpha_{k} \in D, k=k(f)$, and a function $h$ analytic in $\bar{D}$ such that $k(h)=1$ and

$$
f(z)=h\left(\left(\frac{z-\alpha_{1}}{1-\bar{\alpha}_{1} z}\right) \cdots\left(\frac{z-\alpha_{k}}{1-\bar{\alpha}_{k} z}\right)\right) .
$$

Let $H^{2}$ denote the Hardy space of functions $f$ which are analytic in the open disc $D:\{z:|z|<1\}$ and are such that the functions $f_{r}(\theta)=f\left(r e^{i \theta}\right)$ are uniformly bounded in $L^{2}$-norm for $r<1$. Let $H^{\infty}$ denote the space of bounded analytic functions in $D$. For any $\phi \in H^{\infty}$ the analytic Toeplitz operator $T_{\phi}$ on $H^{2}$ is defined by $\left(T_{\phi} f\right)(z)=\phi(z) f(z)$. If $\phi$ is an entire function, then $T_{\phi}$ will be called an entire Toeplitz operator. The operator $T_{z}$ is called the unilateral shift and has the property that the operators on $H^{2}$ which commute with $T_{z}$ are precisely the analytic Toeplitz operators. For any bounded linear operator $A$ on $H^{2}$ it is natural to discuss the commutant $\{A\}^{\prime}=\{B: A B=B A\}$. The paper [2] contains various results about the commutant of an analytic Toeplitz operator, in particular about those analytic functions $\phi$ for which $\left\{T_{\phi}\right\}^{\prime}=\left\{T_{z}\right\}^{\prime}$.

A function $\chi \in H^{\infty}$ is called an inner function if the boundary values $\chi\left(e^{i \theta}\right)$ are of modulus 1 for almost all $\theta$, or equivalently, if $T_{x}$ is an isometry. On the other hand $F \in H^{\infty}$ is called an outer function if $T_{F}$ has a dense range. Every $\phi \in H^{\infty}$ has a unique factorization $\phi=\chi F$, where $\chi$ is inner and $F$ is outer [4].

The following questions arose in [2].
Received January 28, 1974. Revised version received March 27, 1974.

