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An important part of the theory of spectral operators is devoted to finding
conditions sufficient to insure spectralty. There has been a considerable amount
of work done in this direction, particularly when z(T) lies in a CKJordan curve.
In this paper we are concerned with an operator on a IIilbert space H whose
spectrum is in a CKJordan curve. Dunford [4] has shown that if a spectral
operator T with spectrum in a CKJordan curve satisfies a growth condition
then T is of finite type. Stampfli [i0] has given an example to show that the
above result is not necessarily true when a(T) is in a rectifiable Jordan curve.
We show that Dunford’s result is valid when z(T) is in a CKJordan curve, thus
closing the gap. This result is used to find sufficient conditions for an operator
with a(T) in C curve to be spectral. Our result is an analogue of a result of
Dunford [4] for CKJordan curve. Apart from the technical difficulties which
arise because of our consideration of CKJordan curves, the techniques are quite
similar to those used in Battle [i], Dunford [2, 3, 4], Schwartz [7], Stampfli
[8, 9, I0], and Yoshino [Ii].
The Banach algebra of all bounded linear operators on a IIilbert space H is

denoted by B(H). The spectrum, the continuous spectrum and the resolvent set
of an operator T B(H) is denoted by (T), (T) and p(T) respectively.

1. Preliminaries and C Jordan Curves. We begin by introducing a general-
ization of the spectrum and the resolvent set due to Dunford [2, 3]. Let x H,
then R(z; T)x (zI T)-lx is an analytic vector valued function for z p(T).
A vector valued function ](z) is an analytic extension of R(z; T)x if it is defined
and is analytic on an open set D(f) containing p(T) and if (zI T)f(z) x
for all z D(]). If R(z; T)x has single valued extension property (i.e., each
pair of its analytic extensions coincides on their common domain) then we define
a maximal single valued extension of R(z; T)x by taking the union of all analytic
extensions of R(z; T)x and we designate it by (z). Now we set p(T, x) {z:(z)
is analytic at z} and (T, x) complement of p(T, x). The operator T has
the single valued extension property if R(z; T)x has this property for all x H.
The reader is referred to [5] for a discussion of the properties of (T, x).
Throughout this paper F will denote a C Jordan curve of length 2r and

g" S {z" Izl 1} --+ r will stand for arc length parameterization of r. Let
n(s) denote the unit normal (perpendicular to the tangent and directed to the
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