ON EXPONENTIAL DIVISORS

E. G. STRAUS AND M. V. SUBBARAO

Let $\sigma^{(e)}(N)$ denote the sum of the exponential divisors of N, that is, divisors of the form $p_{1}{ }^{b_{1}} \cdots p_{r}{ }^{b_{r}}, b_{i} \mid a_{i}, j=1, \cdots, r$, when N has the canonical form $p_{1}^{a_{1}} \cdots p_{r}{ }^{a_{r}}$, and define $\sigma^{(e)}(1)=1$. Call N exponentially perfect (or simply e-perfect) if $\sigma^{(e)}(N)=2 N$. We here prove several results concerning e-perfect numbers including the nonexistence of odd e-perfect numbers-thus settling a problem raised earlier. We show that the set $\left\{\sigma^{(e)}(n) / n\right\}$ is dense in $[1, \infty)$ and conjecture that the result also holds when $\sigma^{(e)}(n)$ is replaced by any of its iterates. We finally consider the structure of the semigroup of artihmetic functions under exponential convolution.

1. Introduction. By an "exponential divisor" (or e-divisor) of a positive integer $N>1$ with canonical form

$$
\begin{equation*}
N=p_{1}{ }^{a_{1}} \cdots p_{r}^{a_{r}} \tag{1.1}
\end{equation*}
$$

we mean a divisor d of N of the form

$$
d=p_{1}{ }^{b_{1}} \cdots p_{r}^{b_{r}}, \quad b_{i} \mid a_{i}, \quad j=1, \cdots, r .
$$

The number and sum of such divisors of N are denoted respectively by $\tau^{(e)}(N)$ and $\sigma^{(e)}(N)$. By convention, 1 is an exponential divisor of itself so that $\tau^{(e)}(1)=\sigma^{(e)}(1)=1$.

The definition and notation used here are the same as in [4] where these functions are considered in some detail.

It is evident that $\tau^{(e)}(N)$ and $\sigma^{(e)}(N)$ are multiplicative functions, and hence

$$
\begin{gathered}
\tau^{(e)}(N)=\tau\left(a_{1}\right) \cdots \tau\left(a_{r}\right), \\
\sigma^{(e)}(N)=\prod_{i=1}^{r} \sigma^{(e)}\left(p_{i}^{a_{j}}\right)=\prod_{i=1}^{r}\left(\sum_{b_{i} \mid a_{i}} p_{i}^{b_{j}}\right)
\end{gathered}
$$

where $\tau(a)$ denotes, as usual, the number of divisors of a.
In Section 2 we obtain some results concerning exponentially perfect (or briefly, e-perfect) numbers, that is, integers N for which $\sigma^{(e)}(N)=2 N$, and we settle a question raised in [4] (see also [5]) by proving that there are no odd e-perfect numbers. Actually, we prove in Theorem 2.2 in the sequel a more general result.

In Section 3 we show that every number greater than or equal to 1 is a limit point of the set

Received July 17, 1973. Revisions received October 12, 1973. The first author was supported in part by NSF grant GP-28696. The second author was supported in part by NRC grant A-3103.

