THE LARGEST GAPS IN THE LOWER MARKOFF SPECTRUM

T. W. CUSICK

The minimum $m(f)$ of an indefinite binary quadratic form $f(x, y)=a x^{2}+$ $b x y+c y^{2}$ with real coefficients and positive discriminant $d(f)=b^{2}-4 a c$ is defined to be the infimum of $|f(x, y)|$, taken over all pairs of integers x, y not both zero. Markoff [10] showed that for any form f, the inequality $\sqrt{d(f)} / m(f)$ $\geq \sqrt{5}$ holds, and that there is only a countable number of possible values of $\sqrt{d(f)} / m(f)$ less than 3.

The set of all possible values of $\sqrt{d(f)} / m(f)$ is called the Markoff spectrum. It is well known that the Markoff spectrum can also be defined in terms of sequences of positive integers, as follows: Let S denote a doubly infinite sequence $\cdots, a_{-j}, \cdots, a_{-1}, a_{0}, a_{1}, \cdots, a_{i}, \cdots$ of positive integers and define for each integer i

$$
S_{i}=\left[a_{i}, a_{i+1}, \cdots\right]+\left[0, a_{i-1}, a_{i-2}, \cdots\right]
$$

(here we use the customary notation $\left[c_{0}, c_{1}, c_{2}, \cdots\right]$ for the simple continued fraction whose partial quotients are $c_{0}, c_{1}, c_{2}, \cdots$, where c_{0} is an integer and the $c_{i}, i \geq 1$, are positive integers). Further define $M(S)=\sup S_{i}$, where the supremum is taken over all integers i. The Markoff spectrum is the set of all possible values of $M(S)$ as S runs through all possible doubly infinite sequences of positive integers. We shall consider the Markoff spectrum from this point of view throughout this paper.

Perron [12] was apparently the first to observe that there are gaps in the Markoff spectrum above 3. He proved that the intervals

$$
(\sqrt{12}, \sqrt{13})=(3.46410,3.60555)
$$

and

$$
\begin{equation*}
\left(\sqrt{13}, \frac{9 \sqrt{3}+65}{22}\right)=(3.60555,3.66311) \tag{1}
\end{equation*}
$$

contain no points of the Markoff spectrum, and that this result becomes false if either interval is enlarged.

Recently there have been a number of papers dealing wholly or partly with gaps in the Markoff spectrum above 3; for example Bumby [1], Davis and Kinney [3], Hall [6], Hightower [7], Jackson [8] and Kogonija [9].

The purpose of this paper is to give a simple method, based on continued fractions, for exactly locating gaps in the Markoff spectrum. By this we mean

