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1. Introduction. A graph G is said to be ¢mbedded in a closed orientable
2-manifold M if the geometric realization of ¢ as a finite l-complex is homeo-
morphic to a subspace of M. The components of the complement of G' in M
are called regions. A region which is homeomorphic to an open disk is called
a 2-cell; if every region is a 2-cell, the imbedding is said to be a 2-cell smbedding.
If M has genus k, we write M = S, . The genus of a graph G, denoted by v(G),
is the smallest &k (¢ > 0) for which G has an imbedding in S, . It is well-known
(see, for example, [19, p. 198]) that, if G is connected, any imbedding of G on
S, @ (.e., a minimal imbedding) must be a 2-cell imbedding. Clearly, if G is
disconnected, no imbedding of G will be 2-cell.

It is without loss of generality that we restrict our attention to conneeted
graphs when studying the genus parameter, since Battle, Harary, Kodama,
and Youngs [2] have shown that the genus of a disconnected graph is the sum
of the genera of its components. The maximum genus of a graph @, denoted by
v (G), is the largest k (k > 0) for which G has a 2-cell imbedding in S, . Duke
[6] has shown that, if y(G) < k < vx(G), then G has a 2-cell imbedding in S, .
The maximum genus parameter has been studied extensively by Nordhaus,
Stewart, Ringeisen, and the author (see [22], [23], and [25]).

There are relatively few families of graphs for which the genus is known.
In 1955, Ringel [27] showed that the genus of the n-cube @, is given by: v(Q.) =
1 + 2% — 4), for n > 2. This formula was established independently by
Beineke and Harary [3] in 1965. In 1963 Auslander, Brown, and Youngs [1]
produced a family of graphs @, for which v(G,) = n. In 1965 Ringel [28] found
the genus of all complete bipartite graphs: y(K.,.,.) = {((m — 2)(n — 2))/4},
for m, n > 2. Ringel and Youngs [30] settled the Heawood map-coloring con-
jecture in the affirmative in 1968, by showing that the complete graph has genus
given by: v(K,) = {((n — 3)(n — 4))/12}, for n > 3. In 1969 Ringel and
Youngs [31] (and independently the author [33]) found the genus of all regular
complete tripartite graphs: y(K, ...) = ((n — 1)(n — 2))/2. Also in 1969,
Jacques [18] found the genus of certain Cayley graphs , for the symmetric
group S, . During the period 1969-1972, the author found a number of other
genus formulae; see [32], [33], [34], [35], and [36]. Recently Himelwright [17]
has shown that y(K,,. X Q,) = n2" + 1, for n > 0, where “X”’ denotes the
cartesian product.

The maximum genus has been computed for some of the graphs for which
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