CARATHEODORY DISTANCE AND BOUNDED HOLOMORPHIC FUNCTIONS

DON S. KIM

Let (X, A) be a ringed space with X hausdorff and D be a domain (open and connected) in X. Let Δ be the open unit disc in C. Let B = B(D) be the algebra of bounded A-holomorphic functions on D and B_1 be the family of A-holomorphic functions f of D into Δ with $\sup_{x \in D} |f(x)| = ||f||_D = 1$. We define the Carathéodory distance $c = c_D$ as follows: For $x, y \in D$

$$c(x, y) = \sup_{g \in B_1} \rho(g(x), g(y)),$$

where

$$ho(z_1, z_2) = \log rac{|z_2 - z_1| + |1 - z_1 \bar{z}_2|}{\sqrt{(1 - z_1 \bar{z}_1)(1 - z_2 \bar{z}_2)}},$$

where z_1 , $z_2 \in \Delta$. For $g \in B_1$ and $x' \in D$ set

$$f(x') = \frac{g(x') - g(x)}{g(x')\overline{g(x)} - 1} ,$$

then

$$c(x, y) = \sup_{f \in B_x} \left\{ \frac{1}{2} \log \frac{1 + |f(y)|}{1 - |f(y)|} \right\},\$$

where

$$B_x = \{f \in B_1 ; f(x) = 0\}.$$

This distance c is a pseudo-distance on D and c is a distance if and only if B(D) separates the points of D. We note that if B(D) is a maximum modulus algebra then the distance c between two points of D is always finite and is a continuous function of D into $[0, \infty)$. D is a complete domain if every closed ball $\Delta(p, r) = \{x \in D; c(p, x) \leq r\}, p \in D \text{ and } r > 0$, is compact. D is boundedly holomorphic convex if for every compact subset K of D, $\hat{K}_B = \{x \in D; |f(x)| \leq ||f||_K$ for all $f \in B\}$ is compact. D is a domain of bounded holomorphy if there is a function in B(D) which can not be continued holomorphically beyond D.

A point p in the closure D of D in X is called a point of finite distance if for each $x \in D$, $x \neq p$, there exists a neighborhood U of p in X and a finite positive number M such that $c(x, y) \leq M$ for all $y \in U_n D$. A point $p \in \overline{D}$ which is not

Received July 9, 1973. Revised version received November 30, 1973. AMS Subject Classifications (1970). Primary 32D05, 32E05.