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One of the fundamental problems on endomorphism rings is to find necessary
and sufficient conditions that an abstract ring be isomorphic to the endomor-
phism ring of a given type of abelian group (see chapter XV in [3]. The prototype
of theorems along this line is Wolfson’s beautiful characterization of the ring of
all linear transformations of a vector space over a division ring [13]. We have
solved this problem for various types of abelian groups without using matrix
representations for endomorphisms (see [7]-[12]).
The purpose of the present paper is to determine criteria under which an

abstract ring E is the ring E(F) of all R-endomorphisms of a free module F
over a (not necessarily commutative) principal ideal domain R. It is to be
expected that the idempotent elements in E(F) play a key role in this charac-
terization. Our methods partly originate from [9] and [12]. The conditions
we impose on E in Theorem 3.1 are such that E is a dense subring in the finito
topology of E(F). This topology is the usual finite topology on transformation
groups. Completeness of E in this topology then blows up E to the full ring
E(F). Wolfson did not use any topological arguments in his characterization
theorem. Therefore we do not obtain his result as a corollary.
Throughout this paper R denotes a (not necessarily commutative) principal

ideal domain. Unless otherwise indicated, all modules will be unitary left
modules. F will always be a free R-module. Any two bases of F have the same
cardinal ([4], Theorem 17, p. 43). We call it the rank of F and denote it by r(F).
All homomorphisms of modules will be written on the right. ( is our symbol
for direct sum, and (S) stands for the submodule generated by the subset S of F.

1. The Finite Endomorphisms. An R-endomorphism a of F is called finite if
the submodule Fa of F is finitely generated. Let Eo(F) denote the set of all
finite R-endomorphisms of F. It is immediate that Eo(F) is a two-sided ideal
of E(F). Our first objective is to characterize Eo(F) inside E(F) in purely
ring-theoretical terms.

(1.1) LEMMA. Let M be a submodule o] F such that F/M is finitely generated.
Then there exists a decomposition F FI F2 o/F with r(F1) and F M.

Proo]. We have finitely many elements Xl, Xn in F with F
(M, xl, x). There exists a decomposition F F1 ( G of F with r(F) <
andx, F fori 1, n. Here G is free, say, G (ie (g;). Since
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