ENDOMORPHISM RINGS OF FREE MODULES OVER PRINCIPAL IDEAL DOMAINS

WOLFGANG LIEBERT

One of the fundamental problems on endomorphism rings is to find necessary and sufficient conditions that an abstract ring be isomorphic to the endomorphism ring of a given type of abelian group (see chapter XV in [3]. The prototype of theorems along this line is Wolfson's beautiful characterization of the ring of all linear transformations of a vector space over a division ring [13]. We have solved this problem for various types of abelian groups without using matrix representations for endomorphisms (see [7]–[12]).

The purpose of the present paper is to determine criteria under which an abstract ring E is the ring E(F) of all R-endomorphisms of a free module F over a (not necessarily commutative) principal ideal domain R. It is to be expected that the idempotent elements in E(F) play a key role in this characterization. Our methods partly originate from [9] and [12]. The conditions we impose on E in Theorem 3.1 are such that E is a dense subring in the finite topology of E(F). This topology is the usual finite topology on transformation groups. Completeness of E in this topology then blows up E to the full ring E(F). Wolfson did not use any topological arguments in his characterization theorem. Therefore we do not obtain his result as a corollary.

Throughout this paper R denotes a (not necessarily commutative) principal ideal domain. Unless otherwise indicated, all modules will be unitary left modules. F will always be a free R-module. Any two bases of F have the same cardinal ([4], Theorem 17, p. 43). We call it the rank of F and denote it by r(F). All homomorphisms of modules will be written on the right. \bigoplus is our symbol for direct sum, and $\langle S \rangle$ stands for the submodule generated by the subset S of F.

1. The Finite Endomorphisms. An *R*-endomorphism α of *F* is called *finite* if the submodule $F\alpha$ of *F* is finitely generated. Let $E_0(F)$ denote the set of all finite *R*-endomorphisms of *F*. It is immediate that $E_0(F)$ is a two-sided ideal of E(F). Our first objective is to characterize $E_0(F)$ inside E(F) in purely ring-theoretical terms.

(1.1) LEMMA. Let M be a submodule of F such that F/M is finitely generated. Then there exists a decomposition $F = F_1 \bigoplus F_2$ of F with $r(F_1) < \infty$ and $F_2 \subseteq M$.

Proof. We have finitely many elements x_1, \dots, x_n in F with $F = \langle M, x_1, \dots, x_n \rangle$. There exists a decomposition $F = F_1 \bigoplus G$ of F with $r(F_1) < \infty$ and $x_i \in F_1$ for $i = 1, \dots, n$. Here G is free, say, $G = \bigoplus_{i \in J} \langle g_i \rangle$. Since

Received October 17, 1973. This research was supported by NSF grant GP. 28379.