NONSTANDARD HULLS OF THE CLASSICAL BANACH SPACES

C. WARD HENSON AND L. C. MOORE, JR.

In this paper we consider the structure of the nonstandard hulls of the classical Banach spaces (e.g., L^{p} spaces, C(X) spaces) using the methods developed in [4] and [2].

For convenience we adopt the notational conventions and the framework for nonstandard analysis described in [2]. In particular throughout this paper * \mathfrak{M} will denote an enlargement of a set-theoretical structure \mathfrak{M} and we assume that * \mathfrak{M} is at least \aleph_1 -saturated.

If (S, Σ, μ) is a measure space (with μ a positive measure), we let $L^{p}(\mu)$ denote the corresponding Banach lattice of p'th power integrable, real-valued functions $(1 \leq p < \infty)$ and $L^{\infty}(\mu)$ denote the Banach lattice of μ -essentially bounded, measurable real-valued functions. The analogous Banach spaces of complexvalued functions will be denoted by $L^{p}_{\mathbf{C}}(\mu)$. If S has n elements and μ is the equal-weight measure, we denote $L^{p}(\mu)$ and $L^{p}_{\mathbf{C}}(\mu)$ by $l^{p}(n)$ and $l^{p}_{\mathbf{C}}(n)$ respectively. In general, when the measure space (S, Σ, μ) is completely atomic, we denote the corresponding L^{p} -spaces by $l^{p}(S)$ or $l^{p}_{\mathbf{C}}(S)$. When S is the set $N = \{1, 2, \dots\}$, we simply write l^{p} and $l^{p}_{\mathbf{C}}$. We adopt similar conventions for the spaces of convergent sequences $c_{0}(S)$ and c_{0} and for the corresponding complex spaces.

If X is a compact Hausdorff space, we denote by C(X) (respectively $C_{\mathbf{c}}(X)$) the space of continuous, real-valued (respectively complex-valued) functions on X, with the supremum norm. Recall that C(X) is a Banach lattice when given the pointwise ordering.

Section 1. Abstract L^p -spaces; *M*-spaces.

DEFINITION 1.1. Let (L, ρ) be a Banach lattice.

(i) For $1 \le p < \infty$, (L, ρ) is said to be an abstract L^p -space if $0 \le u, v \in L$ with inf (u, v) = 0 implies $\rho(u + v)^p = \rho(u)^p + \rho(v)^p$.

(ii) (L, ρ) is said to be an abstract M-space if $0 \le u, v \in L$ with inf(u, v) = 0 implies $\rho(u + v) = \max(\rho(u), \rho(v))$.

It is known that if (L, ρ) is an abstract L^p -space, then for some measure space (X, Σ) and positive measure η , (L, ρ) is Riesz isometric to $L^p(X, \Sigma, \eta)$. (For p = 1 this is Kakutani's characterization of abstract L-spaces. This can be found in [3]. For 1 , this follows from the results of Marti[10] by noting, as Bernau [1] and Meyer-Nieberg [11] have done, that Marti's $condition of weak sequential completeness is unnecessary.) If <math>(L, \rho)$ is an

Received October 25, 1973.