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1. Introduction. If R is an associative ring and S is a multiplicative semi-
group, then the semigroup ring of S over R is the set of functions f : S — R that
are finitely nonzero, where addition and multiplication are defined by (f + ¢)(s)
= 1(8) + g(s), (f9)(5) = Dtu-s f(t)g(u), where the symbol > u-s indicates
that the sum is taken over all ordered pairs (¢, u) of elements of S with product s.
If = is a property of rings, then one can ask, generally, for conditions on R and
S under which the semigroup ring of S over R has property =. In this paper,
we restrict our attention to the case in which R is a commutative ring with
identity and S is a torsion-free cancellative abelian semigroup with zero, and
we write the semigroup operation on S as addition. We think of such semi-
group rings as generalizations of polynomial rings, and indeed, each polynomial
ring R[{ X, }xea] over R is a semigroup ring over R (take S to be the weak direct
sum of |A| copies of the additive semigroup Z, of nonnegative integers). This
point of view is responsible for our choice of notation; we follow D. G. Northcott
[26; p. 128] and write R[X; S] for the semigroup ring of S over—the elements
of R[X; 8] are “polynomials” r,X"* + r,X** + --- + r,X'", where each r, is
in R and each s, isin S.

In a recent paper [13] we considered the problem of determining, for R and
S commutative, conditions under which the semigroup ring R[X; S] is a GCD-
domain, a unique factorization domain (UFD), or a principal ideal domain
(PID). Since it is known that R[X; S] is an integral domain if and only if R is
an integral domain and S is torsion-free and cancellative, those restrictions
on R and S were observed in [13]. A summary of the results of [13] is the
following theorem (see [13] for the terminology).

THEOREM. Assume that D is an integral domain with identity and S is a
nonzero torsion-free cancellative abelian semigroup with zero.

(1) The semigroup ring D[X; S] 7s a GCD-domain if and only if D is a GCD-
domain and S is a GCD-semigroup.

(2) DIX; 8] is a UFD if and only if D is a UED, 8 s a semigroup with unique
element factorization, and each nonzero element of H, the maximal subgroup of S,
s of type (0,0, 0, ---).

(3) DIX; 8] ¢s a PID if and only if D 1s a field and S is isomorphic to Z, or
to Z, the additive group of integers.
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