EVERY PLANAR GRAPH HAS AN ACYCLIC 8-COLORING

JOHN MITCHEM

An acyclic k-coloring of a graph G is an assignment of k or fewer colors to $V(G)$ such that each element of $V(G)$ has exactly one color, adjacent vertices are colored differently, and any set of vertices with two colors induces an acyclic graph. The minimum k for which G has an acyclic k-coloring is denoted by $a(G)$ and is called the acyclic chromatic number of G. Grünbaum [3] introduced the concept of acyclic coloring, which is related to point-arboricity. (See, for example, [1] or [4].) Although Grünbaum conjectured that for any planar graph $G, a(G) \leq 5$, he was only able to prove that $a(G) \leq 9$. In this paper we show for any planar graph $a(G) \leq 8$.

The degree of a vertex in graph G is denoted $\operatorname{deg}_{G} v$. The set of vertices of degree i is denoted F_{i} and has cardinality f_{i}. We begin with the following remarks and lemma.

Remark 1. Any maximal plane graph with at least four vertices has minimum degree of at least three.

Remark 2. Let v be a vertex of a maximal plane graph with at least four vertices. If $u_{1}, u_{2}, \cdots, u_{k}$ are the vertices adjacent to v taken consecutively in a clockwise fashion, then $u_{1}, \cdots, u_{k}, u_{1}$ is a cycle of G.

Lemma. If G is a maximal plane graph with minimum degree four or five, then at least one of the following holds.
(i) There exists $v \in F_{5}$ which is adjacent to two vertices of degree less than seven.
(ii) There exists $v \in F_{5}$ which is adjacent to an element of F_{5} and an element of F_{7}.
(iii) There exists $v \in F_{4}$ which is adjacent to a vertex of degree less than eight.

Proof. Let v_{1}, \cdots, v_{k} be the elements of F_{5} which are adjacent with exactly one element of F_{5}, and let $v_{k+1}, \cdots, v_{n}, n=f_{5}$, be the remaining elements of F_{5}. Also denote the elements of F_{4} by $u_{1}, \cdots, u_{f_{4}}$, and assume that the lemma is false. This implies that each $v_{i}, 1 \leq i \leq k$, and each $u_{i}, 1 \leq j \leq f_{4}$, is adjacent with exactly four vertices of degree at least eight. Thus the elements of F_{7} are not adjacent with any u_{i} or any $v_{i}, 1 \leq i \leq k$. For $k<i \leq n$ each v_{i} is adjacent to four vertices of degree at least seven and the remaining adjacency has degree at least six. This implies that the only elements of $F_{4} \cup F_{5}$ adjacent to elements of F_{7} are $v_{i}, k<i \leq n$. No two of these v_{i} are adjacent. From Remark 2 it follows that each element of F_{7} is adjacent to at most three elements of $F_{4} \cup F_{5}$. Hence there are at most $3 f_{7}$ edges joining F_{7} to $F_{4} \cup F_{5}$.

Received September 27, 1973. Revisions received November 8, 1973.

