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1. Introduction. Fix A > 1. Define di(n) by ¢(s)* = D_.o1” di(n)n™°, where
¢(s) is the Riemann zeta function. Note that d,(n) is a multiplicative function

such that d,(1) = 1 and d,(p®) = (a + ]; - 1) for p prime, @ > 1. For large
Re (s),
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where H(n) = H(n, \) = \'(A — 1) 220" N di(n). The numbers H(n)
are the extended Eulerian numbers; when n is square-free, H(n) is an Eulerian
number. Properties of the extended Eulerian numbers may be found in [1].

Let @ = Q(n) denote (as usual) the total number of prime factors of n, e.g.
Q(12) = 3. In this paper we give an asymptotic formula for H(n) as @ — .
This formula is then used to sharpen some estimates of Hille [2] and to produce
various other estimates for H(n).

Hille obtained estimates for certain sums Y, H(n) and therefrom deduced
an upper bound and an Q-result for H(n). He remarked that his upper bound
was probably not very sharp when the number of distinct prime factors of n
is large. We study the growth of H(n) by estimating the series Y 0" A7 dy(n)
given above. This direct approach enables us to sharpen Hille’s upper bound
when Q2(n) is large and also to improve his Q-result.

We remark that H(n) grows at least exponentially with Q; in fact, H(n) >
AT/ (N = 1)% Forifn > 1,
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2. The asymptotic formula for H(n). For z > 0 and positive a; , 1 <7 < »,
define f(z) = 2\ []..” (a" :_ x) and define

i

2.) H , - a) = 30— 1) 2 ).
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