AN ASYMPTOTIC FORMULA FOR EXTENDED EULERIAN NUMBERS

RONALD EVANS

1. Introduction. Fix $\lambda>1$. Define $d_{k}(n)$ by $\zeta(s)^{k}=\sum_{n=1}{ }^{\infty} d_{k}(n) n^{-s}$, where $\zeta(s)$ is the Riemann zeta function. Note that $d_{k}(n)$ is a multiplicative function such that $d_{k}(1)=1$ and $d_{k}\left(p^{a}\right)=\binom{a+k-1}{a}$ for p prime, $a \geq 1$. For large $\operatorname{Re}(s)$,

$$
\frac{\lambda-1}{\lambda-\zeta(s)}=\frac{\lambda-1}{\lambda} \cdot \frac{1}{1-\zeta(s) / \lambda}=\frac{\lambda-1}{\lambda} \sum_{k=0}^{\infty} \zeta(s)^{k} \lambda^{-k}=\sum_{n=1}^{\infty} H(n) n^{-s}
$$

where $H(n)=H(n, \lambda)=\lambda^{-1}(\lambda-1) \sum_{k=0}{ }^{\infty} \lambda^{-k} d_{k}(n)$. The numbers $H(n)$ are the extended Eulerian numbers; when n is square-free, $H(n)$ is an Eulerian number. Properties of the extended Eulerian numbers may be found in [1].

Let $\Omega=\Omega(n)$ denote (as usual) the total number of prime factors of n, e.g. $\Omega(12)=3$. In this paper we give an asymptotic formula for $H(n)$ as $\Omega \rightarrow \infty$. This formula is then used to sharpen some estimates of Hille [2] and to produce various other estimates for $H(n)$.

Hille obtained estimates for certain sums $\sum H(n)$ and therefrom deduced an upper bound and an Ω-result for $H(n)$. He remarked that his upper bound was probably not very sharp when the number of distinct prime factors of n is large. We study the growth of $H(n)$ by estimating the series $\sum_{k=0}{ }^{\infty} \lambda^{-k} d_{k}(n)$ given above. This direct approach enables us to sharpen Hille's upper bound when $\Omega(n)$ is large and also to improve his Ω-result.

We remark that $H(n)$ grows at least exponentially with Ω; in fact, $H(n) \geq$ $\lambda^{-1}(\lambda /(\lambda-1))^{2}$. For if $n>1$,

$$
\begin{aligned}
H(n) & \geq \lambda^{-1}(\lambda-1) \sum_{k=0}^{\infty} \lambda^{-k} d_{k}\left(2^{\Omega}\right)=\lambda^{-1}(\lambda-1) \sum_{k=0}^{\infty} \lambda^{-k}\binom{\Omega+k-1}{\Omega} \\
& =\lambda^{-2}(\lambda-1) \sum_{k=0}^{\infty}\binom{\Omega+k}{\Omega} \lambda^{-k} \\
& =\lambda^{-2}(\lambda-1)\left(1-\lambda^{-1}\right)^{-\Omega-1}=\lambda^{-1}(\lambda /(\lambda-1))^{\Omega} .
\end{aligned}
$$

2. The asymptotic formula for $H(n)$. For $x \geq 0$ and positive $a_{i}, 1 \leq i \leq \nu$, define $f(x)=\lambda^{-x} \prod_{i=1}^{\nu}\binom{a_{i}+x}{a_{i}}$ and define

$$
\begin{equation*}
H\left(a_{1}, \cdots, a_{\nu}\right)=\lambda^{-2}(\lambda-1) \sum_{k=0}^{\infty} \lambda^{-k} f(k) . \tag{2.1}
\end{equation*}
$$

Received May 14, 1973. Revisions received November 2, 1973. The author is grateful to Professor Harold G. Diamond for supplying many ideas and much inspiration.

