ON CONSTRUCTING MONOTONE AND UV ${ }^{1}$ MAPPINGS OF ARBITRARY DEGREE

DAVID C. WILSON

1. Introduction. This paper was stimulated by a question of Lacher and McMillan [5]. In particular, is there an inessential $U V^{1}$ map of S^{m} onto itself? If $m \leq 4$, then the answer is no [5]. Theorem 2 below shows that if $m \geq 5$, then there is a $U V^{1}$ map of S^{m} onto itself of any degree. Since a $U V^{0}$ map is monotone, another application of Theorem 2 is that if $m \geq 3$, then there is a monotone map of S^{m} onto S^{m} of arbitrary degree. This gives a counterexample to [6; Theorem 4.5], which states that every monotone map between closed 3 -manifolds can be approximated by a simplicial monotone mapping. For if Schoenefeld's result were true, then since every simplicial monotone mapping between closed 3 -manifolds has degree -1 , 0 , or 1 , every mon otone mapping between closed 3 -manifolds would have degree $-1,0$, or 1 , which contradicts Theorem 2 below. Theorem 5 shows that Soloway's criterion for compactness is the best possible for $U V^{1}$ mappings. Thus, Theorem 5 answers part of [4; Question III].

If K is a finite complex, then let $B_{n}(K)$ denote the n-th barycentric subdivision of K. If G is a collection of subsets of a set X, then let G^{*} denote the union of the members of G. If M^{m} is an m-manifold, then let $\mathrm{Bd} M^{m}$ denote the boundary of M^{m}.

Definition. Let K and L be finite polyhedra. A mapping from K into L will be called almost simplicial if for every $m \geq 0$ there is an integer n such that if $\sigma \in B_{n}(K)$, then $f(\sigma)$ is a subset of some member of $B_{m}(L)$.

Note that simplicial mappings are almost simplicial. Let B^{m} and S^{m} denote the m-ball and m-sphere respectively.

The main theorem of the paper and the central device used in proving Theorem 2 is the following theorem.

Theorem 1. Let M^{m} be a compact connected triangulated m-manifold. Let h be an almost simplicial map from $\mathrm{Bd} M^{m}$ into $\mathrm{Bd} B^{a}$. Let $k=-1,0$, or 1 . If $m \geq 2 k+3$ and M^{m} is k-connected, then there exists an almost simplicial $U V^{k}$ map H from M^{m} onto B^{a} such that H extends h.

Recall that a space X is called k-connected if $\pi_{i}(X)=0$ for $i=0, \cdots, k$. The definition of $U V^{k}$ mapping is given in [3]. The techniques used in the proof of Theorem 1 are very similar to those used in [8]. Note that there is no restriction on the integer q in Theorem 1 so that the map H may raise dimension.

Received May 28, 1973. Revisions received October 5, 1973.

