TRANSFORMATION OF ARITHMETIC FUNCTIONS

L. CARLITZ AND M. V. SUBBARAO

1. Introduction. Let S denote the set of all arithmetic functions $f=f(n)$ for which $f(1)=1$. Define for $n=1,2, \cdots$

$$
\begin{align*}
& \bar{f}(1)=1 ; \bar{f}(n)=\sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{r} \sum_{\substack{a_{1}, \cdots a_{r} \\
a_{i} \neq 1(i=1, \cdots, r)}} f\left(a_{1}\right) \cdots f\left(a_{r}\right), n>1 ; \tag{1.1}\\
& \tilde{f}(1)=1 ; \tilde{f}(n)=\sum_{r=1}^{\infty} \frac{1}{r!} \sum_{\substack{a_{1}, \ldots a_{r}=n \\
a_{i} \neq 1(i=1, \cdots, r)}} f\left(a_{1}\right) \cdots f\left(a_{r}\right), n>1, \tag{1.2}
\end{align*}
$$

where each of the inner summations is over all the sets (a_{1}, \cdots, a_{r}) satisfying the stated conditions.

Let β and γ denote respectively the transformations on S defined by

$$
\beta(f)=\bar{f} \quad \text { and } \quad \gamma(f)=\tilde{f}, \quad f \varepsilon S
$$

In this paper we study the properties of these transformations and consider some applications. We show that β is a bijective mapping on S, that is, β is a onc-to-one mapping of S onto itself, and that its inverse mapping is γ. Equivalently,

$$
\begin{equation*}
\tilde{\bar{f}}=\overline{\tilde{f}}=f, \quad f \varepsilon S \tag{1.3}
\end{equation*}
$$

We also show that if $f \circ g$ denotes the Dirichlet product of f and g, then

$$
\begin{equation*}
\overline{f \circ g}=\bar{f}+\bar{g}, \text { i.e., } \beta(f \circ g)=\beta f+\beta g, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{f+g}=\tilde{f} \circ \tilde{g}, \text { i.e., } \gamma(f+g)=\gamma f \circ \gamma g . \tag{1.5}
\end{equation*}
$$

We apply these results to solve the equation

$$
\begin{equation*}
f^{(k)}=g \tag{1.6}
\end{equation*}
$$

$f, g \varepsilon S$ being given, and $f^{(k)}=f \circ f \circ \cdots \circ f(k$ times $)$. We show that there are k distinct solutions which are readily and elegantly given by

$$
\begin{equation*}
f=\exp (2 \pi \text { is } / k) \cdot \widetilde{(1 / k) \bar{g}}, \quad s=0,1, \cdots, k-1 . \tag{1.7}
\end{equation*}
$$

We also briefly consider the application of our results to the solution of the equation $f^{(k)}=f g, g \varepsilon S$ being given.

Received June 21, 1973. The first author was supported in part by NSF Grant GP-37924.

