ON ADDITION CHAINS $l(mn) \leq l(n) - b$ AND LOWER BOUNDS FOR c(r)

EDWARD G. THURBER

An addition chain for a positive integer n is a set $1 = a_0 < a_1 < \cdots < a_r = n$ of integers such that each element a_i is the sum $a_i + a_k$ of two preceding members (not necessarily distinct) of the set. Let l(n) denote the minimal r for which an addition chain for n exists. Let $\lambda(n) = \lfloor \log_2 n \rfloor$ and $\nu(n)$ denote the number of ones in the binary representation of n. Also, let c(r) denote the first integer which requires r steps in an addition chain of minimal length.

The purpose of this paper is to explore two areas in the study of addition chains. First, D. E. Knuth states [2; p. 416] that it seems reasonable to conjecture that $l(2n) \ge l(n)$ and, more generally, that $l(mn) \ge l(n)$. It is now known that the inequality $l(mn) \ge l(n)$ is not true for all m and n, and it will be shown, in fact, that if b is an arbitrary nonnegative integer and $m = 2^{2k+1} + 1$ for an arbitrary nonnegative integer k, then there exist infinitely many infinite classes of integers n for which $l(mn) \le l(n) - b$. Secondly, a set of lower bounds for c(r) will be developed. An upper bound result for l(n) which is an improvement over the one obtained by using the m-ary chain [2] will be derived and then used in developing the set of lower bounds for c(r).

Step *i* in an addition chain is $a_i = a_i + a_k$ for some $k \leq j < i$. Clearly, $a_i \leq 2a_i \leq 2a_{i-1}$. Thus, either $\lambda(a_i) = \lambda(a_{i-1})$ or $\lambda(a_i) = \lambda(a_{i-1}) + 1$. If $\lambda(a_i) = \lambda(a_{i-1})$, Knuth [2; p. 405] calls step *i* a small step. If $\lambda(a_i) = \lambda(a_{i-1}) + 1$, step *i* will be called a big step. Knuth [2; p. 405] has pointed out that the length *r* of an addition chain for *n* is $\lambda(n)$ plus the number of small steps in the chain. If $N(a_i)$ denotes the number of small steps in the chain up to a_i , then $r = \lambda(n) + N(n)$.

If in an addition chain $a_i = 2a_{i-1}$, then step *i* is called a doubling. Otherwise, step *i* shall be called a nondoubling. If $a_k < a_i$ are two members of an addition chain and there are at least four nondoublings from a_k to a_i , then it is not hard to show that $a_i \leq 2^{i-k-4}(8a_k - 3)$. From this it follows that $a_i < 2^{i-k-1}a_k$ which implies that $\lambda(a_i) - \lambda(a_k) \leq j - k - 1$. The number of big steps in the chain from a_k to a_i is $\lambda(a_i) - \lambda(a_k)$ while j - k is the total number of steps in the chain from a_k to a_i . Thus, there must be at least one small step from a_k to a_i . This result is a generalization of Stolarsky's [3; Lemma 1] and may be summarized by saying that if $a_k < a_i$ are two members of an addition chain and there are at least four nondoublings from a_k to a_j , then $N(a_i) \geq N(a_k) + 1$.

It has been proved [4] that if $\nu(n) \ge 9$, then $l(n) \ge \lambda(n) + 4$. In other words if $\nu(n) \ge 9$, then there are at least four small steps in any chain for n. This

Received May 14, 1973.