SOME INVERSE RELATIONS

L. CARLITZ

1. Introduction. Gould and Hsu [2] have proved the following result.

Theorem 1. Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be two sequences of complex numbers such that

$$
a_{i}+b_{i} k \neq 0, \quad i=1,2,3, \cdots, k=0,1,2, \cdots
$$ and put

$$
\begin{equation*}
\psi(x, n)=\prod_{i=1}^{n}\left(a_{i}+b_{i} x\right) \tag{1.2}
\end{equation*}
$$

The system of equations

$$
\begin{equation*}
f(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \psi(k, n) g(k), \quad n=0,1,2, \cdots, N \tag{1.3}
\end{equation*}
$$

is equivalent to the system
(1.4) $\left.g(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} a_{k+1}+k b_{k+1}\right) \frac{f(k)}{\psi(n, k+1)}, \quad n=0,1,2, \cdots, N$, where N is a fixed positive integer or infinity.

The principal object of the present paper is to prove the following q-analog of Theorem 1.

Theorem 2. Let $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ be two sequences of complex numbers, let q be an arbitrary complex number such that

$$
a_{i}+q^{-k} b_{i} \neq 0, \quad i=1,2,3, \cdots, k=0,1,2, \cdots
$$

and put

$$
\begin{equation*}
\psi(x, n, q)=\prod_{i=1}^{n}\left(a_{i}+q^{-x} b_{i}\right) \tag{1.6}
\end{equation*}
$$

The system of equations

$$
f(n)=\sum_{k=0}^{n}(-1)^{k} q^{\frac{3 k}{k}(k-1)}\left[\begin{array}{l}
n \tag{1.7}\\
k
\end{array}\right] \psi(k, n, q) g(k), \quad n=0,1,2, \cdots, N
$$

is equivalent to the system

$$
\begin{align*}
& g(n)=\sum_{k=0}^{n}(-1)^{k} q^{\frac{1}{k}(k+1)-k n}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left(a_{k+1}+q^{-k} b_{k+1}\right) \cdot \frac{f(k)}{\psi(n, k+1, q)}, \tag{1.8}\\
& n=0,1,2, \cdots, N,
\end{align*}
$$

Received August 2, 1973. This research was supported in part by NSF grant GP-37927.

