A NOTE ON LOCAL SOLVABILITY

C. HOEL

Introduction. As is well known the differential operator $D_x + ix^k D_y$ is not locally solvable at the origin when k is an odd integer, whereas when k is an even integer it is both solvable and analytic-hypoelliptic [3], [5]. This example led to fundamental work on the question of local solvability for principal type operators [1], [4].

In the following we consider the above example when the condition that k be a nonnegative integer is relaxed. Of course x^k is not smooth anymore and restrictions on allowable solutions must be imposed so the multiplication is well defined. This permits the elementary analysis below.

We set $P(\lambda) = D_x + ix^{\lambda}D_y$ where x^{λ} is defined as $|x|^{\lambda}$ if x > 0 and $|x|^{\lambda}e^{i\pi\lambda}$ if x < 0. Thus x^{λ} is locally integrable only for Re $\lambda > -1$ and would need further definition at the origin to define a distribution for Re $\lambda < -1$, e.g., $(x + i0)^{\lambda}$ in Gel'fand and Shilov. Fortunately we are able to avoid this complication in the following.

PROPOSITION 1. $P(\lambda)u = f$ is not locally solvable at the origin if λ is real, $\lambda > -1$, $\cos \pi \lambda < 0$, and u is required to be an element of $(C_0^{\lambda}(\Omega_x) \otimes C_0^{\infty}(\Omega_y))'$.

Of course f is an element of $C_0^{\infty}(\Omega)$ where we have taken $\Omega = \Omega_x X \Omega_y$ as a rectangular open neighborhood of the origin. We now explain the other notation. $C_0^{\lambda}(\Omega_x)$ for Ω_x an open interval of the real line is the inductive limit of the Banach spaces $C_0^{\lambda}(K_x)$ which are in turn the completions of $C_0^{\infty}(K_x)$ with norm $||u||_{\lambda} = \sup (|D^{\lambda}|u(x) - D^{\lambda}|u(x')|/|x - x'|^{\lambda-\lambda})$. The sup is over all pairs (x, x') in $K_x X K_x$, and as usual $[\lambda]$ is the integral part of λ . Since we are allowing $-1 < \lambda < 0$ we interpret $D^{-1}u$ as any primitive of u.

Thus $C_0^{\lambda}(K_x) \otimes C_0^{\infty}(K_y)$ has seminorms $\sup_y ||D_y^i u(x, y)||_{\lambda}$ for each j and $C_0^{\lambda}(\Omega_x) \otimes C_0^{\infty}(\Omega_y)$ is the inductive limit of these spaces.

Before proving the proposition we remark that the standard result is nonsolvability for $\lambda \geq 0$, $\cos \pi \lambda = -1$, and u an element of $(C_0^{\circ}(\Omega_x) \otimes C_0^{\circ}(\Omega_y))'$, i.e., a distribution in Ω .

Proof. The usual estimate violation will be employed [2] which very roughly attempts to find a nice sequence v_i in ker 'P such that $v_i \to \delta$. This then gives a contradiction to the solvability of Pu = f by $0 = \langle u, Pv_i \rangle = \langle f, v_i \rangle \to f(0)$.

Explicitly we first assume $P(\lambda)u = f$ is solvable in an open rectangular neighborhood $\Omega = \Omega_x X \Omega_y$ of the origin, i.e., for each f in $C_0^{\infty}(\Omega)$ there exists a solution u in $(C_0^{\lambda}(\Omega_x) \otimes C_0^{\infty}(\Omega_y))'$. Next we pick $\omega = \omega_x X \omega_y$, another open rectangular neighborhood of the origin, such that $\omega \subseteq \Omega$.

Received March 12, 1973.