K-REFLEXIVITY IN FINITE DIMENSIONAL SPACES

EDWARD A. AZOFF

Let 3C be an *n*-dimensional Hilbert space, $n \ge 4$. A subalgebra \mathfrak{A} of $\mathfrak{L}(\mathfrak{C})$ is defined to be *k*-reflexive if $\mathfrak{A}^{(k)}$, a *k*-fold copy of \mathfrak{A} , is reflexive. The main theorems of the paper state that (1) every subalgebra of $\mathfrak{L}(\mathfrak{K})$ is (n-1)-reflexive and (2) every commutative subalgebra of $\mathfrak{L}(\mathfrak{K})$ is (n/2)-reflexive. Examples are given to show these results are "best-possible".

Several alternate characterizations of k-reflexivity provide the main technique of the paper. As a by-product, we are able to exhibit a commutative algebra \mathfrak{A} such that $\mathfrak{A} \neq \mathfrak{A}'' \cap \text{Alg Lat } \mathfrak{A}$; this answers a question of P. Rosenthal.

1. Introduction. All Hilbert spaces discussed in this paper will be complex and finite dimensional. We denote by $\mathfrak{L}(\mathfrak{K})$ the collection of all (linear) operators on the Hilbert space \mathfrak{K} . Let \mathfrak{A} be an identity-containing subalgebra of $\mathfrak{L}(\mathfrak{K})$. Then Lat \mathfrak{A} denotes the collection of subspaces of \mathfrak{K} invariant under each operator in \mathfrak{A} and Alg Lat \mathfrak{A} denotes the collection of operators in $\mathfrak{L}(\mathfrak{K})$ leaving each subspace in Lat \mathfrak{A} invariant. Finally, for $A \in \mathfrak{L}(\mathfrak{K})$ we write $A^{(k)}$ for the direct sum of k copies of A and $\mathfrak{A}^{(k)}$ for $\{A \in \mathfrak{A}\}$.

A subalgebra \mathfrak{A} of $\mathfrak{L}(\mathfrak{K})$ is said to be *reflexive* if it is determined by its invariant subspaces, i.e., $\mathfrak{A} = \text{Alg Lat } \mathfrak{A}$. In [3] Deddens and Fillmore gave necessary and sufficient conditions for \mathfrak{A}_A , the algebra generated by A (and the identity), to be reflexive. The more general problem of determining all reflexive subalgebras of $\mathfrak{L}(\mathfrak{K})$ has so far defied solution.

The purpose of this paper is to measure how nonreflexive an algebra can be. More precisely, we call an algebra \mathfrak{A} *k-reflexive* if $\mathfrak{A}^{(k)}$ is reflexive. Let \mathfrak{K} be *n*-dimensional, $n \geq 3$. Our main results follow.

(1) There exists a subalgebra of $\mathfrak{L}(\mathfrak{K})$ which is not (n-2)-reflexive.

(2) Every subalgebra of $\mathfrak{L}(\mathfrak{K})$ is (n-1)-reflexive.

These results are obtained in Section 3; for the proofs, we rely on several alternate characterizations of k-reflexivity obtained in Section 2.

The final three sections of the paper are devoted to extensions of the above results. In Section 4 we present analogues of (1) and (2) for commutative subalgebras of $\mathcal{L}(\mathcal{K})$; as a corollary, we see that not every commutative algebra \mathfrak{A} satisfies $\mathfrak{A} = \mathfrak{A}'' \cap \text{Alg Lat } \mathfrak{A}$, thus answering a question of [6]. A generalization of (2) is proved in Section 5, and the paper closes with a discussion of vector spaces over fields other than **C**.

Received January 29, 1973. Revisions received July 30, 1973. The author would like to thank Professor Pearcy for his advice and encouragement.