ON THE EXISTENCE OF NONTRIVIAL RECURRENT MOTIONS

ROBERT J. SACKER AND GEORGE R. SELL

1. Introduction. Consider a flow $\pi : X \times R \to X$ on a compact connected metric space X and let $\mathfrak{M} = \mathfrak{M}(X)$ denote the collection of all minimal closed invariant subsets of X. Let $\mathfrak{I} \subseteq \mathfrak{M}$ be a distinguished subcollection of minimal sets. We wish to find conditions on the flow π which imply that $\mathfrak{I} \neq \mathfrak{M}$. For example if \mathfrak{I} is the collection of all stationary points of π , then under what conditions does there exist a nontrivial recurrent motion, i.e., a minimal set that is not a stationary point? In general let us refer to those minimal sets in \mathfrak{I} as being *trivial* and those, if any, in $\mathfrak{M} - \mathfrak{I}$ as *nontrivial*.

Recall that in the case X is a compact 2-dimensional manifold, the manner in which stationary points are joined by transit orbits plays a crucial role in determining the existence of periodic orbits [3]. An orbit $\gamma(x) = \{\pi(x, t) : t \in R\}$ is a transit orbit if the limit sets α_x and ω_x are stationary points P and Q.

In the above case the stationary points P and Q are examples of two minimal sets that are *l*-related, a concept which we now define for a general flow. We shall say that two minimal sets P and Q are *l*-related (limit set related) if there is an x in X such that $\alpha_x \cap P \neq \emptyset$ and $\omega_x \cap Q \neq \emptyset$ or vice versa. We use this to define a relation \sim on 3. Let P and Q be two minimal sets in 5. We shall say that $P \sim Q$ if there exist minimal sets $\{M_0, \dots, M_k\}$ in 5 such that $P = M_0$, $Q = M_k$ and M_{i-1} and M_i are *l*-related. Clearly \sim is an equivalence relation on 5. Let $\{5\} = \{\mathcal{O}_1, \mathcal{O}_2, \dots\}$ be the partitioning of 5 into equivalence classes under \sim , i.e., two minimal sets P and Q belong to the same equivalence class \mathcal{O}_i if and only if $P \sim Q$. Note that if 5 contains a finite number of minimal sets, then card $\{5\}$, the number of equivalence classes in $\{5\}$, is finite.

We will prove the following theorem.

THEOREM 1. Assume that 3 is a finite subcollection of \mathfrak{M} . If card $\{3\} \geq 2$, then there is a nontrivial minimal set in $\mathfrak{M} - 3$.

This is clearly equivalent to the following theorem.

THEOREM 2. Let K be an invariant continuum in X and let $\mathfrak{M}(K)$ be the collection of all minimal closed invariant subsets of K, and assume that $\mathfrak{M}(K) = \{M_1, \dots, M_{\sigma}\}$ is finite. Then for all i, j one has $M_i \sim M_j$.

We have already seen one interpretation of Theorem 1 in the case that 3 is the collection of all stationary points for the flow π . Another interpretation

Received December 11, 1972. Revisions received May 24, 1973. The first author was supported in part by the United States Army under Contract DA-ARO-D-31-124-71-G14. The second author was supported in part by NSF Grants No. 27275 and GP-38955.