BANACH SPACES OF 1° VALUED HOLOMORPHIC MAPPINGS

JAMES M. WESTALL, JR.

1. Introduction and definitions. A mapping $F = (f_i)$ defined on the unit disc of the complex plane and having values in an l^p space is said to be holomorphic if for every z_0 in the disc there is a continuous linear mapping $DFz_0 \in \mathcal{L}(\mathbf{C}, l^p)$ such that $||F(z) - F(z_0) - DFz_0 (z - z_0)||_p = 0$ $(|z - z_0|)$.

Aron and Cima have shown in [1] that if $F = (f_i)$ is such an ℓ^p valued mapping and if f_i is holomorphic for each j, then the following are equivalent.

- (a) F is holomorphic.
- (b) F is continuous.
- (c) F is weakly continuous.
- (d) F is locally bounded.

For $1 \leq p < \infty$ an l^{ν} valued holomorphic mapping F, for which $\log^{+}||F||_{\nu}$ has a harmonic majorant, has a Stoltz limit at almost every point of the unit circle [3].

We now define two distinct Banach space structures for l^p valued holomorphic mappings analogous to the H^p structure for complex valued ones. An l^* valued holomorphic mapping $F = (f_i)$ defined on the unit disc is said to be in $H_1^p(\Delta, l^*)$ if

$$||F|| = \sup_{r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} ||F(re^{it})||_s^p dt \right)^{1/p} < \infty$$

and in $H_2^{p}(\Delta, l^s)$ if

$$_{2}||F|| = \sup_{r < 1} \left(\sum_{i=1}^{\infty} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f_{i}(re^{it})|^{p} dt \right)^{s/p} \right)^{1/s} < \infty$$

where $1 \le p < \infty$ and $1 \le s < \infty$. It is easy to see that if p = s, then $||F|| = 2||F|| = (\sum_{i=1}^{\infty} ||f_i||^p)^{1/p}$.

Before beginning a discussion of these two spaces we note some properties of two related mixed norm L^{P} spaces which will be shown to possess closed subspaces isometrically isomorphic to $H_{1}^{p}(\Delta, l^{s})$ and $H_{2}^{p}(\Delta, l^{s})$. If N denotes the positive integers, the spaces

$$L^{(*,p)}(N \times [0, 2\pi]) = \left\{ F : N \times [0, 2\pi] \to \mathbb{C} \; \middle| \; ||F||_{(*,p)} = \left(\frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{j=1}^\infty |F(j, t)|^* \right)^{p/*} dt \right)^{1/p} < \infty \right\}$$

and

Received April 4, 1973.