CONCERNING FIRST COUNTABLE SPACES, II

G. M. REED

In [15] the author gave necessary and sufficient conditions for the existence
of dense developable and dense metrizable subspaces in first countable spaces.
In addition, each Nagata space was shown to have a dense metrizable subspace
and each semi-metric space was shown to have a dense developable subspace.
In this paper the author continues the investigation begun in [15]. An example
is given of a first countable T,-space which has no dense developable subspace.
Furthermore, it is shown that (1) each space with a base of countable order
has a dense quasi-developable subspace and (2) each space with a base of
countable order and which has the Baire property has a dense metrizable G-
subset. It follows that (i) for each subset M of the regular wA-space (M -space)
S with a G;-diagonal in which closed sets are Gy’s there exists a dense Moore
(metrizable) subspace K of S such that M M K is dense in M and (ii) each
regular countably compact space with a G;-diagonal has a dense metrizable
subspace.

By a development for a space S (all spaces are to be T,) is meant a sequence
Gy, @,, --- of open coverings of S such that for each point p and each open set
D containing p there exists a positive integer n such that each element of G,
containing p is contained in D. A regular space having a development is a
Moore space.

TueoreM 1 [15]. The first countable space S has a dense developable subspace
if and only if there exists a dense subspace X of S such that X is the union of
countably many subsets X ; , where for each © no point of X is a limit point of X, .

TueorREM 2. A hereditarily Lindelof, nonseparable space has no dense de-
velopable subspace.

Proof. Suppose Y is a dense developable subspace of the hereditarily Lindelof
space S. By Theorem 1, there exists a dense subspace X of ¥ such that X =
UX; , where for each 7 no point of X is a limit point of X; . But, since S is
hereditarily Lindelof, it follows that X is countable. Hence, S is separable.
Thus each hereditarily Lindelsf, nonseparable space has no dense developable
subspace.

CoroLLArY 2.1. If Souslin spaces exist, they have no dense developable
subspaces.
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