SOME LOCALIZATIONS OF THE SPECTRAL MAPPING THEOREM

ROBERT G. BARTLE AND CONSTANTINE A. KARIOTIS

One of the most fundamental results in the spectral theory of bounded linear operators on a complex Banach space X is the spectral mapping theorem due to Nelson Dunford [10]. This theorem (see also [11; Chapter VII, 3.11]) asserts that if T is a bounded linear operator in X and if f is a complex-valued function holomorphic on a neighborhood of the spectrum $\sigma(T)$ of T, then the spectrum of the operator f(T) (defined by the contour integral $f(T) \equiv (1/2\pi i) \int_{\Gamma} f(\lambda) R(\lambda; T) d\lambda$, where Γ is a "scroc" enclosing $\sigma(T)$ and contained in the domain of f) is given by $\sigma(f(T)) = f(\sigma(T))$.

The purpose of this paper is to present several extensions of this basic theorem. We call them "localizations" of this result because they deal with the spectra of T and f(T) "localized" to vectors x in X, with the spectra of the restrictions (or quotients) of T and f(T) "localized" to certain subspaces, or with the spectra of the restrictions (or quotients) of T and f(T) "localized" to vectors in certain subspaces.

A number of the main results are taken from the second author's dissertation [13] completed in 1966 at the University of Illinois.

1. The local spectral mapping theorem. In the following, X always denotes a complex Banach space and B(X) denotes the algebra of all bounded linear operators in X. In the main, the terminology and notation will be that of [11] or [6], except that the word "subspace" always means a *closed* linear manifold.

We recall [6; p. 1], [11; p. 1931] that an operator $T \in B(X)$ is said to have the single-valued extension property if for any function f holomorphic on an open subset U of the complex plane \mathbb{C} with values in X and such that $(\lambda I - T)f(\lambda) = 0$ for $\lambda \in U$, it follows that $f(\lambda) = 0$ for $\lambda \in U$. If T has this property and $x \in X$, then we define the local resolvent set of x (with respect to T) to be the set $\rho_T(x)$ of all $\lambda_0 \in \mathbb{C}$ such that there exists a function \mathfrak{X}_T holomorphic on a neighborhood of λ_0 with values in X such that $(\lambda I - T)\mathfrak{X}_T(\lambda) = x$ for all λ . Since T has the single-valued extension property, such a function \mathfrak{X}_T is evidently unique. Moreover $\mathfrak{X}_T(\lambda) = R(\lambda; T)x$ for $\lambda \in \rho(T)$, the resolvent set of T, and so $\rho(T) \subseteq \rho_T(x)$. Clearly $\rho_T(x)$ is open so its complement $\sigma_T(x) \equiv \mathbb{C} - \rho_T(x)$, which is contained in $\sigma(T)$, is compact. We call $\sigma_T(x)$ the local spectrum of x (with respect to T). If $F \subseteq \mathbb{C}$ is closed, we introduce the linear manifold

Received December 15, 1972. Received revisions May 31, 1973.

The authors were partially supported by grants from the National Science Foundation. AMS 1970 subject classifications: Primary 47A10, 47A60; Secondary 47A15.