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One of the most fundamental results in the spectral theory of bounded linear
operators on a complex Banach space X is the spectral mapping theorem due
to Nelson Dunford [10]. This theorem (see also [11; Chapter VII, 3.11]) asserts
that if T is a bounded linear operator in X and if ] is a complex-valued function
holomorphic on a’ neighborhood of the spectrum a(T) of T, then the
spectrum of the operator ](T) (defined by the contour integral ](T)
(1/2vi) r )(h)R(h; T) dh, where 1 is a "scroc" enclosing a(T) and contained
in the domain of ) is given by a(/(T)) =/((T)).
The purpose of this paper is to present several extensions of this basic theorem.

We call them "localizations" of this result because they del with the spectra
of T and ](T) "localized" to vectors x in X, with the spectra of the restrictions
(or quotients) of T and ](T) "localized" to certain subspaces, or with the spectra
of the restrictions (or quotients) of T and ](T) "localized" to vectors’in certain
subspaces.
A number of the main results are taken from the second author’s dissertation

[13] completed in 1966 at the University of Illinois.

1. The local spectral mapping theorem. In the following, X always denotes
a complex Banach space and B(X) denotes the algebra of all bounded linear
operators in X. In the main, the terminology and notation will be that of [11]
or [6], except that the word "subspace" always means a closed linear manifold.
We recall [6; p. 1], [11; p. 1931] that an operator T B(X) is said to have

the single-valued extension property if for any function holomorphic on an open
subset U of the complex plane C with values in X and such that (hi T)l(h) 0
for h U, it follows that/(h) 0 for h U. If T has this property and x X,
then we define the local resolvent set o] x (with respect to T) to be the set pr(x)
of all ho C such that there exists a function 2r holomorphic on a neighborhood
of ho with values in X such that (hi T)zr(h) x for all k. Since T has the
single-valued extension property, such a function r is evidently unique. More-
over r(h) R(h; T)x for h p(T), the resolvent set of T, and so p(T)
Clearly p,(x) is open SO its complement at(x) - C pr(x), which is contained
in a(T), is compact. We call at(x) the local spectrum of x (with respect to T).
If F C is closed, we introduce the linear manifold
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