# ABELIAN SUBSEMIGROUPS, ENUMERATION, AND UNIVERSAL MATRICES 

KIM KI-HANG BUTLER AND JAMES RICHARD KRABILL

1. Let $B_{n}$ be the semigroup of all binary relations on a set with $n$ elements represented as $n \times n$ matrices over the Boolean algebra of order 2 . Let $J_{n}$ be the universal matrix of order $n$, that is, the $n \times n$ matrix in $B_{n}$ with all entries 1. Let $C_{n}$ be the subsemigroup of all circulants, and let $C\left(J_{n}\right)$ be the set of $C \in C_{n}$ such that $C^{D}=J_{n}$ for some positive integer $p$. The set $C\left(J_{n}\right)$ is enumerated and is shown to be an abelian subsemigroup. Related results on $C_{n}$ were obtained by the authors in [3]. Some new subsets, denoted $K_{n}$, $K_{n}^{\prime}$ and $K_{n}^{\prime \prime}$, are defined and are shown to be maximal abelian subsemigroups, which are of much larger cardinality than $C_{n}$, when $n>2$. Further, if $K \in K_{n}$ but $K$ is not in the center of $B_{n}$, then $K^{2}=J_{n}$. Another subset, not a subsemigroup, is defined and enumerated. This set, denoted $L_{n}$, has the property that $L \in L_{n}$ implies $L^{2}=J_{n}$. Relations between these sets are given.
B. M. Schein asked for the maximal abelian subgroup of $B_{n}[8]$. The authors [3] showed that $C_{n}$, the set of all circulants in $B_{n}$, is a maximal abelian subsemigroup of $B_{n}$ with cardinality $2^{n}$. The term "maximal" is used in the sense that the abelian subsemigroup is not properly contained in any abelian subsemigroup of $B_{n}$. In this paper new maximal abelian subsemigroups are defined which provide further partial solutions to Schein's question. The other main result of [3] is the following theorem.

Theorem 0. Let $C \in C_{n}, n>1$. There exists a positive integer $p$ such that $C^{p}=J_{n}$ if and only if $(\delta(C), n)=1$ and for every divisor $d$ of $n, d>1$, there exist $i, j \in \Delta(C)$ such that $i \neq j(\bmod d)$. Here, matrix rows and columns are labelled 0 through $(n-1)$ respectively, $\Delta(C)=\left\{i: c_{0, i}=1,0 \leq i \leq n-1\right.$, $\left.c_{i k} \in C \in C_{n}\right\}$, and $\delta(C)$ is the greatest common divisor of the elements of $\Delta(C)$. If $p$ exists, then $p \leq n-1$.
2. This theorem provides a partial answer to a problem considered by N. S. Mendelsohn [7], I. J. Good [6], and N. G. de Bruijn [1]. The problem, in our terminology, is to find all $A, A \in B_{n}$, such that some power of $A, A^{p}$, is the universal matrix $J_{n}$. A related problem is to find all $A$ in $B_{n}$ whose square is the universal matrix. We remark that by the above theorem, $C^{p}=J_{n}$, $p$ minimal, if and only if $\delta(C)$ is a basis of order $p$ of the integers modulo $n$ under addition modulo $n$. We now define $C\left(J_{n}\right)$ to be the set of all circulants $C$ for which some power of $C$ is the universal matrix $J_{n}$. The product of two matrices $A$ and $B$ will be indicated by juxtaposition. Let $N=\{1,2, \cdots, n, \cdots\}$ and $n \in N$ throughout this paper.

Received February 23, 1973.

