ON $\Lambda_1(\alpha)$ -NUCLEARITY

WILLIAM ROBINSON

In this paper it is shown that $\Lambda_1(\alpha)$ -nuclearity coincides with pseudo- $\Lambda_1(\alpha)^{\times}$ nuclearity and that every $\Lambda_1(\alpha)$ -nuclear map is of type $\Lambda_1(\alpha)^{\times}$. In addition to various examples and applications of these results, it is shown that the classes of $\Lambda_{\infty}(\alpha)$ -nuclear spaces and the classes of $\Lambda_1(\beta)$ -nuclear spaces mesh in a natural way. Finally, the relationship of permanence properties to stability is exhibited.

There has been much activity in recent years on the theory of λ -nuclearity, and in their Memoir, Dubinsky and Ramanujan [2] devote much attention to the case that λ is an infinite type power series space. In this paper we consider finite type power series spaces $\Lambda_1(\alpha)$ and give a characterization which shows that $\Lambda_1(\alpha)$ -nuclearity is quite different from $\Lambda_{\infty}(\beta)$ -nuclearity.

In Section 2 we show that the $\Lambda_1(\alpha)$ -nuclear maps are the same as the pseudo- Λ_1 -(α)-nuclear maps. In Section 3 we apply this to obtain diverse examples. In Section 4 we consider permanence properties of $\Lambda_1(\alpha)$ -nuclearity and its relationship to stability.

1. Preliminaries. Most of the terminology is the same as in [2], with certain exceptions. In [2], $\Lambda(\alpha)$ refers only to infinite type power series spaces. Here we shall denote by $\Lambda_1(\alpha)$ the finite type power series spaces associated with α and by $\Lambda_{\infty}(\alpha)$ the infinite type power series spaces associated with α . Thus, for $(\alpha_n)_{n=0}^{\infty}$ such that $0 \leq \alpha_0 \leq \alpha_1 \leq \cdots$ and such that $\lim_n \alpha_n = \infty$

$$\Lambda_1(\alpha) = \{(t_n) : ||t||_k = \sum \left(\frac{k}{k+1}\right)^{\alpha_n} |t_n| < +\infty, \qquad k = 0, 1, \cdots\}$$

with Frechet topology generated by the norms $|| ||_{k}$.

$$\Lambda_{\infty}(\alpha) = \{(t_n) : ||t||_k = \sum k^{\alpha_n} |t_n| < +\infty, \, k = 0, \, 1, \, \cdots \}$$

with Frechet topology generated by the norms $|| ||_{k}$. It is well-known that $\Lambda_{1}(\alpha)$ is nuclear if and only if $\lim_{n} (\log n)/\alpha_{n} = 0$ and that $\Lambda_{\infty}(\alpha)$ is nuclear if and only if $\lim_{n \to \infty} (\log n)/\alpha_{n} < +\infty$ [5; 6.1.5].

For more facts of a general nature concerning the following concepts, refer to [2; p. 10ff]. Let E and F be normed linear spaces, and let λ be a sequence space. A linear map $T: E \to F$ is said to be λ -nuclear if $Tx = \sum \xi_n < x, a_n > y_n$ for all $x \in E$, where $\xi \in \lambda$, $(a_n) \in E'$, with $(||a_n||)_n \in l_{\infty}$, and $(y_n) \subseteq F$ is such that $(\langle y_n, b \rangle) \in \lambda^*$ for all $b \in F'$. Denote by $N_{\lambda}(E, F)$ the collection of λ nuclear maps from E to F.

T is said to be pseudo- λ -nuclear if $Tx = \sum \xi_n \langle x, a_n \rangle y_n$ for all $x \in E$, where

Received January 22, 1973. Received revisions March 28, 1973.