EXTREME POINTS IN $\boldsymbol{H}^{1}\left(\boldsymbol{U}^{n}\right)$

ROBERT B. SCHNEIDER

1. Introduction. Rudin and de Leeuw [1] characterized the extreme points of the unit ball in $H^{1}(U)$ as those outer functions in $H^{1}(U)$ whose norm is one. Rudin [5] has extended many properties of $H^{1}(U)$ to $H^{1}\left(U^{n}\right)$ and it is natural to ask for a characterization of extreme points of the unit ball of $H^{1}\left(U^{n}\right)$. As Yabuta [6] points out it is still true that outer functions are extreme, but he gives an example to show there are other extreme ponits with zeros in U^{n}. Riesenberg [3] has obtained characterizations for extreme points that are polynomials and we shall include his work here. The following lemma illustrates the approach we shall take to determine whether a function f is extreme.

Lemma A. f of norm 1 is not extreme in the unit ball of $H^{1}\left(U^{n}\right)$ iff there is an $h \in H^{1}\left(U^{n}\right)$ for which h / f is nonconstant, real and bounded a.e. on T^{n}.

The proof of Lemma A is completely analogous to the proof in one variable. Lemma A is equivalent to the criterion that there exists an $h \in H^{1}\left(U^{n}\right)$ with $\arg (h+f)=\arg (f-h)=\arg (f)$ a.e. on T^{n}. We thus study the question of characterizing those $g \in H^{1}\left(U^{n}\right)$ for which $\arg (g)=\arg (f)$ a.e. on T^{n}. In Section 2 we give such a characterization assuming that f is either analytic on $\overline{U^{n}}$ or continuous on $\overline{U^{n}}$ and nonzero on T^{n}. Our characterization reduces to a case covered by Yabuta [7] if f has no zeros on $\overline{U^{n}}$, but we are primarily interested in functions with zeros in U^{n}. In Section 3 we deduce Riesenberg's work from our characterizations. In Section 4 we obtain some new types of extreme points. We also examine the h that would exist from Lemma A if f were not extreme. We conclude that if $f \neq 0$ on T^{n}, then if f is in $A\left(U^{n}\right)$, then $h \in A\left(U^{n}\right)$, and if f is analytic on $\overline{U^{n}}$, then so is h.

2. Notation.

2.1. If Q is a polynomial in $\mathbf{C}^{n}, \widetilde{Q}$ is the polynomial whose coefficients are the complex conjugates of the coefficients of Q. If $z=\left(z_{1}, \cdots, z_{n}\right)$ is in C^{n} with $z_{i} \neq 0$ for all i, then $1 / z=\left(1 / z_{1}, \cdots, 1 / z_{n}\right)$.

Definition 2.2 (Riesenberg). Q satisfies the symmetry condition with respect to a monomial $M(z)$ iff $M(z) \widetilde{Q}(1 / z)=Q(z)$.

It is not hard to derive (see Riesenberg [3]) that Q is symmetric with respect to some monomial M iff Q has the form

$$
\begin{equation*}
Q(z)=\alpha z^{m(0)} \prod_{i=1}^{t} Q_{i}(z) z^{m(j)} \widetilde{Q}_{i}\left(\frac{1}{z}\right) \prod_{i=t+1}^{l} Q_{j}(z) \tag{1}
\end{equation*}
$$

Received October 4, 1972. The author was partially supported by N.S.F. Grant GP28251.

