LIE DERIVATIONS OF VON NEUMANN ALGEBRAS

C. ROBERT MIERS

Let M be a von Neumann algebra and denote by $[M, M]$ the linear span of all operators of the form $[X, Y]=X Y-Y X$ for $X, Y \in M$. A mapping $L:[M, M] \rightarrow M$ is called a Lie derivation of $[M, M]$ if L is linear and $L[X, Y]=$ $[L(X), Y]+[X, L(Y)]$ for $X, Y \in[M, M]$. It is shown that L can be extended to an associative derivation D of M, where $D(X)=[A, X], A \in M$. As a corollary, if L is a Lie derivation of M, then $L(X)=[A, X]+\lambda(X)$, where $A \in M$ and λ is a linear map from M into Z_{M} which annihilates brackets of operators.

1. Introduction. Let M be an associative algebra over the complex field. With the multiplication $[X, Y]=X Y-Y X, M$ can be considered a Lie algebra and its structure can be studied. A Lie subalgebra M_{0} of M is a linear subspace of M closed under the bracket multiplication. A Lie derivation of M_{0} into M is a linear map L which has the property that $L[X, Y]=[L(X), Y]+[X, L(Y)]$ for all X, Y in M_{0}. Martindale [3] has shown that if $M_{0}=M$ is a primitive ring with nontrivial idempotent and characteristic not equal to 2 , then L is of the form $D+\lambda$, where D is an associative derivation of M and λ is an additive map of M into its center which annihilates brackets of ring elements.

In this note we show that if M is a von Neumann algebra and if $M_{0}=[M, M]$, the linear subspace of all finite linear combinations of elements of the form [X, Y], $X, Y \in M$, then a Lie derivation L of $[M, M]$ in M can be extended to an associative derivation D of M. (It is known [7; Theorem 1] that if D is an associative derivation of a von Neumann algebra, then D is inner. That is, $D(X)=[A, X]$ for some $A \in M$.) As a corollary we have that a Lie derivation L of a von Neumann algebra M is of the form $D+\lambda$. Analogous results for extensions of Lie isomorphisms of $[M, M$], where M is a simple ring, have been obtained in [2] and for extensions of Lie *-isomorphisms of [M, M], where M is a von Neumann algebra, in [4].

We use Dixmier [1] as a reference for notation and general results concerning von Neumann algebras. If M is a von Neumann algebra, we denote by Z_{M} the center of M. If P and Q are projections in M, then $P M Q=\{P A Q \mid A \in M\}$, $P M Q M P=\left\{\sum_{i=1}^{n} P X_{i} Q Y_{i} P \mid X_{i}, Y_{i} \in M\right\}$, and $M_{P}=P M P$.
2. Lie derivations of $[M, M]$. Let $L:[M, M] \rightarrow M$ be a Lie derivation of [M, M], where M is a von Neumann algebra. Because of a "lack of room" in matrix computations we treat the I_{2} case separately.

Received November 27, 1972.

