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The Jacobi sums, which can be defined in terms of generalized Gaussian
sums, occupy a central position in cyclotomy. It was conjectured that all the
arithmetic relationships between Jacobi sums of a certain order can be derived
from elementary properties of Gaussian sums and the formula of Davenport
and Hasse. Four counterexamples were given previously; five new ones are
given here. For each of the counterexamples there is a sign which cannot be
determined by means of the abovementioned tools. But some information
about the sign can be obtained from congruence conditions on coordinates
of certain binary quadratic decompositions of primes.

1. Introduction. Let p ef - 1 be a prime. Let g be a fixed primitive
root of p. The Jacobi sum R(m, n) R,(m, n) of order e is defined by

--1

(1.1) R(m, n) exp [(m ind, a -[- n indo (1 a))2ri/e].

The Jacobi sums are related to other character sums, including Gaussian
sums (1.6), Jacobsthal sums [13], and Kloosterman sums [5]. They play an
important role in several aspects of the theory of cyclotomy, including deter-
mination of cyclotomic numbers [6], [11] and residuacity criteria [7].

For any value of e there is the problem of determining the relationships
between the various Jacobi sums of order e. Two Jacobi sums R(m, n) and
R(mr, n) will be said to be related linearly if there exist integers/ and s such
that R(m, n) uf?a. R(m, n), exp (2ri/e), u +/-1, (s, e) 1, where
a. 9 --/* denotes the automorphism of Q(f) mapping/9 into 9". By calling
R(m, n) and R(m, n’) equivalent if and only if they are related linearly, we
can divide the Jacobi sums of order e into equivalence classes. Then if all the
linear relationships are known, the values of all the Jacobi sums of order e
can be derived from a list of the values of a set of representatives for the Jacobi
sums of order e, one representative from each equivalence class.

If e is prime, it suffices to use the elementary relationships R(m, n) R(m
if m m (mod e) and n n (mode),

(1.2)

and [2; (83)1

(1.3)

(,R(m, n) R(sm, sn),

R(m, n) R(n, m) (-1)’R(-m n, n).
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(s,e) 1,


